ca/hex/ca-hex.js

530 lines
14 KiB
JavaScript
Executable File

/*
Cellular automata, polar coordinates.
Michael Soukup, 2014
*/
function nearestMod0(f, n) {
var mod = f % n;
if (mod < n/2) { // floor
return f-mod
}
else { // ceil
return f+n-mod
}
}
function Cartesian(x, y) {
this.x = x;
this.y = y;
}
Cartesian.prototype.r = function() {
return Math.sqrt(Math.pow(this.x,2) + Math.pow(this.y, 2));
}
Cartesian.prototype.theta = function() {
return Math.atan2(this.y, this.x);
}
function Polar(r, theta) {
this.r = r;
this.theta = theta;
}
Polar.prototype.x = function() {
return this.r*Math.cos(this.theta);
}
Polar.prototype.y = function() {
return this.r*Math.sin(this.theta);
}
function Vector(x, y) {
this.x = x;
this.y = y;
}
Vector.prototype.add = function(v) {
this.x += v.x;
this.y += v.y;
}
Vector.prototype.sub = function(v) {
this.x -= v.x;
this.y -= v.y;
}
function Frame(o, v) {
this.o = o;
this.v = v;
}
Frame.prototype.center = function() {
return new Cartesian(this.o.x + this.v.x/2, this.o.y + this.v.y/2);
}
var CELL_COL = {
0: '#eee',
1: '#222',
2: '#484',
3: '#a44',
4: '#8a8a8a'
},
CELL_STROKE = {
0: '#bbb',
1: '#222',
2: '#484',
3: '#a44',
4: '#8a8a8a'
},
CELL_LINEWIDTH = {
0: 0.1,
1: 0.8,
2: 0.5,
3: 0.5,
4: 0.2
},
CELL_T = {
'empty': 0,
'wall': 1,
'player': 2,
'enemy': 3,
'conway': 4
},
CELL_CONFIGS = {
'player0': [2,2,2,2,2,2],
'enemy0': [3,3,3,3,3,3],
'organism0': [4,0,4,0,0,0,4,0,0,4,4,4],
'box': [4,4,0,0,0,0],
'diamond': [4,0,0,4,0,0]
};
var Game = (function(canvas_id) {
var canvas = document.getElementById(canvas_id),
ctx = canvas.getContext('2d'),
view = new Frame(new Cartesian(0,0), new Vector(canvas.width, canvas.height)),
n_poly, r_poly, alpha_poly;
function Organism(cell_seq, x, y) {
this.cells = cell_seq; // Must be of length % n == 0. When big enough, cell sequence becomes a new cell. Cells expand recursively
this.o = new Cartesian(x, y); // Continuous. Fit to r_sim before simulation
this.layers = cell_seq.length/world.n_cell;// find radius = f(length sequence)
//this.r = this.layers*world.r_cell;
}
function loadWorld(w) {
n_poly = w.n_poly;
r_poly = w.r_poly;
alpha_poly = Math.PI / n_poly;
}
function drawPolygon(N, R, phi, x, y, fill) {
var vertice = new Polar(R, phi - Math.PI / N),
dtheta = 2*Math.PI / N;
ctx.fillStyle = fill;
ctx.beginPath();
ctx.moveTo(x+vertice.x(), y+vertice.y());
for (var i=0; i<N; i++) {
vertice.theta += dtheta;
ctx.lineTo(x+vertice.x(), y+vertice.y());
}
ctx.closePath();
ctx.fill();
}
function drawPolySeq(seq, N, R, phi, x, y) {
var l = 1, incr = 0, c_0l = 1, dtheta = 2*Math.PI / N,
pol = new Polar(0,0);
drawPolygon(N, R, phi, x, y, CELL_COL[seq[0]]);
for (var i=1; i<seq.length; i++) {
if (++incr > N*l) {
l++;
incr = 0;
c_0l = i;
dtheta = (2*Math.PI) / (l*N);
}
pol.theta = (i - c_0l)*dtheta + phi;
pol.r = Math.sqrt(3*Math.pow(R*l, 2) + Math.pow((l/2 - (i - c_0l) % l)*2*R, 2));
drawPolygon(N, R, phi, x+pol.x(), y+pol.y(), CELL_COL[seq[i]]);
}
}
function getNeighbourhood(i, l, N) {
var X = [];
if (i == 0) { // origo is special
for (var _i=0; _i<N; _i++) {
X.push(_i+1);
}
return X;
}
var c_0l = 3*l*(l-1)+1, // c_0l sequence expression :)
_diff = N*(l-1) + Math.ceil((i-c_0l)/l),
_add = N*l + Math.ceil((i-c_0l)/l);
if ((i - c_0l) % l == 0) { // crown cell
if (i != c_0l) {
X.push(i+_add-1);
}
X.push(i+_add);
X.push(i+_add+1);
X.push(i+1);
if (l == 1) { // watch out for origo
X.push(i-_diff-1);
}
else {
X.push(i-_diff);
}
if (i == c_0l) {
X.push(i + N*l - 1);
X.push(i + N*l + N*(l+1) - 1);
}
else {
X.push(i-1);
}
}
else {
if ((i - N*l + 1) == c_0l) {
X.push(i+_add);
X.push(c_0l);
X.push(c_0l-N*(l-1));
X.push(i-_diff);
X.push(i-1);
X.push(i+_add-1);
}
else {
X.push(i+_add-1);
X.push(i+_add);
X.push(i+1);
X.push(i-_diff+1);
X.push(i-_diff);
X.push(i-1);
}
}
return X;
}
function neighbours(org, i, l, N) {
var rv = [], X = getNeighbourhood(i, l, N);
for (var n=0; n<X.length; n++) {
if (n < org.length) {
rv.push(org[X[n]]);
}
else {
rv.push(0);
}
}
return rv
}
function neighbourDist(X) {
var dist={0:0, 1:0, 2:0, 3:0, 4:0};
for (var n=0; n<X.length; n++) {
dist[X[n]]++;
}
return dist;
}
function cell_0_update(X) {
// count neighbours for now
var nd = neighbourDist(X);
if (nd[2] >= 2 && nd[4] > 0) { // Inside of player
return 4
}
else if (nd[4] == 2) { // rebirth rule
return 4
}
else if (nd[1] > 2) { // wall rule
return 4
}
else {
return 0
}
}
function cell_1_update(X) {
return 1
}
function cell_2_update(X) {
// player cell
var nd = neighbourDist(X);
if (nd[4] > 2 || nd[2] > 4) {
return 0
}
else {
return 2
}
}
function cell_3_update(X) {
// enemy cell
var nd = neighbourDist(X);
if (nd[4] > 3 || nd[3] > 4) {
return 0
}
else {
return 3
}
}
function cell_4_update(X) {
// conway live cells
var nd = neighbourDist(X);
if (nd[2] > 2 && nd[4] >= 2) { // Inside corner of player
return 2
}
else if (nd[4] == 2){
return 4
}
else if (nd[1] > 2) { // wall rule
return 4
}
else {
return 0
}
}
function cellNext(c, X) {
// Size of neighbourhood N is nxn where n is (r*2 + 1), r in {1,2,3...}:
// 3x3, 5x5, 7x7, ...
switch (c) {
case 0:
return cell_0_update(X);
case 1:
return cell_1_update(X);
case 2:
return cell_2_update(X);
case 3:
return cell_3_update(X);
case 4:
return cell_4_update(X);
}
}
function simulate(org, dt) {
var org_buf = [],
l = 0,
incr = 0,
X,
N = 6;
X = neighbours(org, 0, l, N);
org_buf.push(cellNext(org[0], X))
for (var i=1; i<org.length; i++) {
if (++incr > N*l) {
l++;
}
X = neighbours(org, i, l, N);
org_buf.push(cellNext(org[i], X));
}
return org_buf;
}
function drawOrganism(organism, depth) {
// recursive
return 0
}
function drawGrid() {
var o = view.center(),
o_polar = new Polar(o.r(),-o.theta());
o_polar.r = nearestMod0(o_polar.r, world.r_cell); // set r to fit nearest
o_polar.theta = nearestMod0(o_polar.theta, world.dtheta) + world.theta_cell;// set theta to nearest
// Set relative to canvas
o.x = o_polar.x() - view.o.x;
o.y = o_polar.y() - view.o.y;
o_polar.r = 0; o_polar.theta = world.theta_cell;
var i = 0,
r_max = Math.sqrt(Math.pow(o.x, 2), Math.pow(o.y, 2)); // Upper left corner
console.log(o);
console.log(o_polar.r);
console.log(r_max);
console.log(o_polar.x());
var dtheta;
while (o_polar.r < r_max) {
o_polar.r = Math.ceil(i/world.n_cell)*2*world.r_cell;
dtheta = 2*Math.PI/(Math.ceil(i/world.n_cell)*world.n_cell);
o_polar.theta = Math.ceil(i/world.n_cell)*world.n_cell*i + world.theta_cell;
drawPolygon(o_polar.x()+o.x, o_polar.y()+o.y,
world.r_cell, world.n_cell, 0,
'#bbb');
i++;
}
}
function update() {
// move and update physics;
// fit origo to tiles
// check for collision, merge and expand radius
// simulate
// update camera
// load simulation frame from world config?
}
return {
loadWorld: loadWorld,
testDraw: function() {
//drawGrid();
//drawPolygon(N, R, phi, x, y, fill)
drawPolygon(6, 10, 0, 40, 80, '#aaa');
drawPolygon(6, 15, (2*Math.PI/6)/10, 100, 80, '#aaa', '#ddd', 0.4);
drawPolygon(3, 15, 0, 180, 80, '#aaa', '#ddd', 0.4);
drawPolygon(3, 15, 2*Math.PI/12, 240, 80, '#aaa', '#ddd', 0.4);
drawPolygon(8, 15, 0, 300, 80, '#aaa', '#ddd', 0.4);
//drawPolySeq(seq, N, R, phi, x, y)
var n=6, px=10, phi=Math.PI/n;
drawPolySeq([2,2,3,3,3,2,4,2,2,1,2,2,2,3,2,2,2,2,2,2,3,4,1,1,1,1,2,2,2,2,2,3,3,3,2,2,2,4], n, px, phi, 101.5, 201.5);
drawPolySeq([2,2,3,3,3,2,4,2,2,1,2,2,2,3,2,2,2,2,2,2,3,4,1,1,1,1,2,2,2,2,2,3,3,3,2,2,2,4], n, px/2, phi, 301.5, 201.5);
n=4; px=5; phi=Math.PI/n;
drawPolySeq([2,2,2,3,3,2,2,2,2,3,3,3,3,2,2,4,4,2,2,4,2,3,2,2,3,3,2], n, px, phi, 501.5, 201.5);
},
testLogic: function() {
var n=6,l=2,i=7;;
console.log('c_02 neighbourhood: (i=7)');
X = getNeighbourhood(i, l, n);
console.log(X);
i=1;l=1;n=6
console.log('c_01 neighbourhood: (i=1)');
X = getNeighbourhood(i, l, n);
console.log(X);
i=22;l=3;n=6
console.log('crown 1 l=3 neighbourhood (i=22):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=34;l=3;n=6
console.log('crown 5 l=3 neighbourhood (i=34):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=8;l=2;n=6
console.log('middle 1 l=2 neighbourhood (i=8):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=60;l=4;n=6
console.log('middle step layer 6 l=4 neighbourhood (i=60):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=4;l=1;n=6
console.log('crown 3 l=1 (i=4):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=3;l=1;n=6
console.log('crown 3 l=1 (i=3):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=13;l=2;n=6
console.log('crown 3 l=2 (i=13):');
X = getNeighbourhood(i, l, n);
console.log(X);
i=0;l=0;n=6
console.log('center cell (i=0):');
X = getNeighbourhood(i, l, n);
console.log(X);
},
testSimulation: function() {
var n=6, px=10, phi=Math.PI/n, dt=1000,
player=[4,4,4,0,0,0,0,4,0,0,0,4,0,0,4,4,4,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2],
enemy1=[4,0,0,0,4,4,0,0,4,0,0,4,4,4,4,0,0,0,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3];
enemy2=[4,4,4,0,4,4,0,0,4,0,0,4,4,4,4,0,0,0,4,4,0,0,0,0,4,4,4,0,0,4,4,0,0,4,4,0,0,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3];
wallor=[1,0,1,0,1,0,4,4,4,0,1,0,1,0,1,0,0,4,4,4,4,4,0,0,0,4,4,4,0,0,4,4,0,0,4,4,4,0]
drawPolySeq(player, n, px, phi, canvas.width*0.25, canvas.height*0.25);
drawPolySeq(enemy1, n, px, phi, canvas.width*0.75, canvas.height*0.75);
drawPolySeq(enemy2, n, px, phi, canvas.width*0.8, canvas.height*0.2);
drawPolySeq(wallor, n, px, phi, canvas.width*0.2, canvas.height*0.8);
setInterval(function (){
player = simulate(player, dt);
enemy1 = simulate(enemy1, dt);
enemy2 = simulate(enemy2, dt);
wallor = simulate(wallor, dt);
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawPolySeq(player, n, px, phi, canvas.width*0.25, canvas.height*0.25);
drawPolySeq(enemy1, n, px, phi, canvas.width*0.75, canvas.height*0.75);
drawPolySeq(enemy2, n, px, phi, canvas.width*0.8, canvas.height*0.2);
drawPolySeq(wallor, n, px, phi, canvas.width*0.2, canvas.height*0.8);
}, dt);
}
}
});
// conway
// static rule
// CELL MAP
/**
0: dead or empty tile
1: solid wall
2: skin cell (player)
3: skin cell (enemy)
4: living cell
4:
**/
var WORLD0 = {
"n_poly": 6, // Must be 3, 6, ..
"r_poly": 15,
"alpha_poly": 0,
"dtheta": 2*Math.PI / 6,
"r_sim": 2000,
"o_f_init": new Cartesian(0, 0),
"level": 0,
"config": [] // sequence of cell configs
};
var game = Game('board');
//game.loadWorld(WORLD0);
//game.testDraw();
//testLogic();
game.testSimulation();