{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib notebook\n", "\n", "import numpy as np\n", "import toolz\n", "import matplotlib.pyplot as plt\n", "from scipy.io import savemat" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Frequency response\n", "\n", "Implicitly plot the function\n", "\n", "\\begin{align}\n", "\\frac{\\gamma^2}{z^2} &= (\\omega^2 - \\alpha - \\frac{3}{4}\\beta z^2)^2 + (\\delta \\omega)^2 \\implies \\\\\n", "z &= \\frac{\\gamma}{\\sqrt{(\\omega^2 - \\alpha - \\frac{3}{4}\\beta z^2)^2 + (\\delta \\omega)^2}} \\implies\n", "\\end{align}\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def right(gamma, alpha, beta, delta, z, omega):\n", " denom = (omega**2 - alpha - (3/4)*beta*z**2)**2 + (delta*omega)**2\n", " return gamma/np.sqrt(denom)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "gamma = 1\n", "alpha = 1\n", "beta_mul = 0.01\n", "delta = 0.1\n", "\n", "z, omega = np.meshgrid(\n", " np.linspace(0, 15, 500),\n", " np.linspace(0, 2, 500)\n", ")\n", "\n", "betas = (-0.3, 0.0, 10)\n", "for i, beta in enumerate(betas):\n", " fig = plt.figure(i)\n", " G = right(gamma, alpha, beta*beta_mul, delta, z, omega)\n", " plt.contour(omega, z, (z-G), [0])\n", " plt.xlabel(\"$\\omega$\")\n", " plt.ylabel(\"$z/\\gamma$\")\n", " fig.suptitle(\"Frequency response, beta=\" + str(beta))\n", " fig.savefig('frequency-response-%d.png' % i)\n", "\n", "fig = plt.figure(len(betas))\n", "for beta in betas:\n", " G = right(gamma, alpha, beta*beta_mul, delta, z, omega)\n", " plt.contour(omega, z, (z-G), [0])\n", " plt.xlabel(\"$\\omega$\")\n", " plt.ylabel(\"$z/\\gamma$\")\n", "fig.suptitle(\"Frequency response, beta=\" + ', '.join(map(str, betas)))\n", "fig.savefig('frequency-response-%d.png' % len(betas))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gamma = 1\n", "alpha = 1\n", "beta_mul = 0.01\n", "delta = 0.1\n", "\n", "z, omega = np.meshgrid(\n", " np.linspace(0, 15, 1000),\n", " np.linspace(0, 2, 1000)\n", ")\n", "\n", "data = {'z': z, 'omega': omega}\n", "for beta in (-0.3, 0.0, 1, 4, 10):\n", " data['G_beta%.1f' % beta] = right(gamma, alpha, beta*beta_mul, delta, z, omega)\n", "savemat('duffing-freq-response.mat', data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def right(gamma, alpha, beta, delta, z, f):\n", " omega = 2*np.pi*f\n", " denom = (omega**2 - alpha - (3/4)*beta*z**2)**2 + (delta*omega)**2\n", " return gamma/np.sqrt(denom)\n", "\n", "f_resonance = 8e3\n", "omega_resonance = 2*np.pi*f_resonance\n", "\n", "gamma = 1e7\n", "alpha = omega_resonance**2\n", "beta_mul = 1e8\n", "delta = 200\n", "\n", "z, fs = np.meshgrid(\n", " np.linspace(0, 1.2, 500),\n", " np.linspace(7e3, 9e3, 500)\n", ")\n", "\n", "plt.figure()\n", "for beta in (-0.5, 0.0, 1, 4):\n", " G = right(gamma, alpha, beta*beta_mul, delta, z, fs)\n", " plt.contour(fs, z, (z-G), [0])\n", " plt.xlabel(\"$\\omega$\")\n", " plt.ylabel(\"$z$\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from scipy.stats import skew\n", "from scipy.interpolate import interp1d\n", "\n", "def get_pointmap(gamma, alpha, beta, delta, z, f):\n", " fig = plt.figure()\n", " G = right(gamma, alpha, beta, delta, z, f)\n", " cs = plt.contour(f, z, (z-G), [0])\n", " p = cs.collections[0].get_paths()[0]\n", " v = p.vertices\n", " plt.close(fig)\n", " return v[:,0][::-1], v[:,1][::-1]\n", "\n", "def clip_pointmap(xs, ys):\n", " # If softening spring, mirror the distribution across 0 and back\n", " if skew(xs) > 0:\n", " # Is order/direction different when softening?\n", " raise NotImplementedError()\n", " _xs, _ys = clip_pointmap(-1*xs, ys)\n", " return -1*_xs, _ys\n", " \n", " # Find peak and continue s.t. x is monotonically increasing\n", " indexes = []\n", " N = len(xs)\n", " max_x = xs[0] - 1e-9\n", " for i in range(0, N):\n", " if xs[i] > max_x:\n", " indexes.append(i)\n", " max_x = xs[i]\n", " return xs[indexes], ys[indexes]\n", "\n", "def resample_pointmap(xs, ys, n):\n", " lin = interp1d(xs, ys)\n", " new_xs = np.linspace(xs[0], xs[-1], n)\n", " return new_xs, lin(new_xs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "f_resonance = 8e3\n", "omega_resonance = 2*np.pi*f_resonance\n", "\n", "gamma = 1e7\n", "alpha = omega_resonance**2\n", "beta = 2e8\n", "delta = 200\n", "\n", "zs, fs = np.meshgrid(\n", " np.linspace(0, 1.2, 500),\n", " np.linspace(7e3, 9e3, 500)\n", ")\n", "\n", "plt.ioff()\n", "xs, ys = get_pointmap(gamma, alpha, beta, delta, zs, fs)\n", "plt.ion()\n", "\n", "print(\"Original\")\n", "print(len(xs))\n", "print(len(ys))\n", "print(skew(xs[::-1]))\n", "print(np.argmax(ys))\n", "plt.figure()\n", "plt.plot(xs, ys)\n", "\n", "xs, ys = clip_pointmap(xs, ys)\n", "print(\"Clipped\")\n", "print(len(xs))\n", "print(len(ys))\n", "plt.figure()\n", "plt.plot(xs, ys)\n", "\n", "xs, ys = resample_pointmap(xs, ys, 100)\n", "print(\"Resampled\")\n", "print(len(xs))\n", "print(len(ys))\n", "plt.figure()\n", "plt.plot(xs, ys)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Rough method\n", "\n", "#### Simulating frequency response -- no coupling\n", "\n", " 1. Calculate linear stiffness $\\alpha$ from resonance frequencies.\n", " 2. Derive slope and half-width maximum by search on $\\beta$ and $\\delta$. Scale signals and apply MSE loss function.\n", " 3. Finally, scale amplitude by the inverse of scaling factor in 2).\n", " \n", "Step 3) outputs ballpark parameters for frequency scan simulations. See other notebook for coupling and further optimization." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }