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Abstract
The piezoresistive silicon based stress sensor

has the potential to detect a precursor for the Prognostics

and Health Management (PHM) implementation in

automotive electronics. One solution to enforce reliability

in automotive electronics is the use of Machine Learning

(ML). One or more physical parameters are being

monitored, and algorithms are used to illustrate the health

state and predict remaining useful life based on the

current and past health information. Piezo-resistive stress

sensors are employed to measure the internal stresses

of electronic packages, an Acquisition Unit (AU) to

read out sensor data and a Raspberry Pi as PHM server

to perform evaluation. Accelerated tests in air thermal

chamber are performed to get time series data of the

stress sensor signals, with which we can know better

about how delamination develops inside the package.

In this study stress measurements are performed in

several electronic packages during the delamination. The

delamination is detected by the stress sensor due to the

continuous change of the stiffness and the local boundary

conditions causing the stresses to change. Moreover, the

stress change in multiple cells can give more information

regarding the delamination such as the location and its

state. Data preprocessing methods to remove outliers and

filter raw measurement results, and feature extraction

methods to capture only meaningful information by

reducing the data are chosen and applied to raw data. A

logical assumption is made regarding the data behavior

and delamination state, based on data analytics and with

Scanning Acoustic Microscope (SAM) images confirmed

the delaminated area. FEM simulation are used to provide

a qualitatively physical explanation of the stress change

due to the delamination. A prognostic model using neural

network is trained to estimate the degradation grade.

Back Propagation Neural Networks are chosen to provide

a fast and quick training for the mechanical stress data.

1. Introduction

There are several definitions of Reliability [1], [2].

In engineering [2], it is set as the "ability of a system

or component to perform its required functions under

stated conditions for a specified period of time". These

conditions refer to conditions like mechanical, thermal,

electrical specifications. In this definition, a system [3]

is "a combination of interacting elements (components)

organized to achieve one or more stated purposes".

Reliability prediction methods date 70 years into the

past [4]. In that time, the concept of Reliability has been

extensively used on design, operation and maintenance

tasks. On the design stage of a product the concept of

Design for Reliability (DfR) [5] appears, in which a

model of the product is developed. This model is used

by the manufacturer to define the working conditions and

lifetime of the product that it will guarantee. A more

reliable component (or system) works longer hours on

tougher conditions on the operation stage; saving with this

maintenance, repairs and replacement costs.

There are two main approaches in reliability: A statistic-

based approach (like the Weibull model [6] or the fault tree

analysis [7] that considers the reliability of each compo-

nent to estimate the reliability of a system) or a physics-of-

failure-based approach [5] (like the use of Finite Element

Method (FEM) software to simulate loading conditions

and ensure that the component will perform at its design

capacity).

Both models does not predict the real status of a

singular component. As neither monitors the real time

state of the component. Their assessments are of statistical

relevance.

It is because of this that, for example, other techniques

as redundancy are usually used to ensure zero Downtime

(the period in which a system is unavailable) on relevant

components. But this solution requires having another

component identical in function as the original as backup

and this solution is not cost-effective.

With this new notion and the foreseeable advent

of widespread complex consumer grade systems as

autonomous vehicles, it becomes evident that a new

paradigm must be set to overcome the limitations of

current reliability models.

A. Automotive Electronics

A recent report by PwC [8] predicts that by 2020 the

% of total car cost used on automotive electronics will be

35%, and it will climb to 50% by 2030. The main reasons

for this predicted increase are:

• An increment in electronic systems quantity on the

vehicle required to keep and monitor the vehicles

efficiency required by regulation laws in the EU and

the US.
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• An increase in functionalities added by the manufac-

turers to improve the user experience. New electronic

systems (that includes new sensors, control units,

communication network and power supply) are added

to give the car new functions as assisted parking,

vehicle cruise speed control, infotainment, emergency

braking, etc).

• The push towards automotive driving adds new sys-

tems like radar, lidar, gps location and steering con-

trol that was not required on traditional autos.

The automotive industry is a particular as consumer

demands on its final product are higher than on other prod-

ucts. Car manufacturers must ensure that their electronic

products last longer and ensure their functionality.

With the industry moving forward towards offering

consumer-grade autonomous driving vehicles, there has

never been higher requirements to automotive electronics

in terms of power efficiency, size and weight and espe-

cially in Reliability.

B. Machine Learning

ML should not be confused with Artificial Intelligence

(AI). AI is the concept of a machine exhibiting intelligence

similar to humans or animals1 AI is divided into Weak

and Strong AI. The former is an AI that can perform

a narrowly defined set of tasks or just one task. The

latter is an AI that is capable of applying intelligence to

a problem and even showing consciousness. This means

that the machine exhibiting Strong AI is not constrained to

just one set of problem, as its knowledge and intelligence

generalizes to all sets of tasks.

Strong AIs do not exist up to date. All current AIs are

Weak as they specialize into solving a set of tasks tightly

constrained and work using curated data sets2, differing

from the human learning experience.

For mentioning a set of examples:

• Google’s search algorithm

• Google’s image recognition algorithm

• A predictive keyboard algorithm

• An email spam filter

• AlphaGo3 [9]

ML is a subset of artificial intelligence (AI) that creates

systems to learn and predict outcomes without manually

programming a computer and is also known as predictive

analytics or statistical learning" [10]. It is a set of algo-

rithms and techniques focused to learn from data. Here,

data is an organized collection of measures and/or classes;

and learning means the ability to get information from

1This is what is called natural intelligence.
2It is considered best practice to preprocess the data before feeding

it to a learning algorithm to expedite the learning process. In occasions
it is mandatory to preprocess the data as learning would be impossible
otherwise.

3AlphaGo is an AI developed by Google’s DeepMind to play the board
game Go. Its the first AI to beat a Go’s professional player without the
use of handicaps on a 19x19 board.

data that would generalize to other sets of data. This last

is what differences ML techniques from other statistical

tools. They focus on the generalization aspect of the data

analysis and not only in creating a model that works with

the data at hand. A ML model is general, it is valid for

new data points the model has never been exposed to.

ML is not a recent research field. One of the first steps

in this direction is considered to be taken by Thomas

Bayes [11] with "An Essay towards solving a Problem

in the Doctrine of Chances" on 1763, where he stated

the bases for Bayesian Statistics, a statistical theory in

which the evidence about the real state of the world is

expressed in terms of degree of belief. Scattered advances

were performed on the early 18th century as the prolific

mathematician Adrien-Marie Legendre publishes the Least

Squares method on 1805 and Pierre-Simon Laplace for-

malizes what is known today as Baye’s Theorem on 1812.

No more significant progress would be done until mid 19th

century.

The context of the mid-19th century contemplates the

beginning of the Digital Revolution4 that was triggered by

invention of the transistor on 1947 by John Bardeen, Wal-

ter Brattain, and William Shockley at AT&T’s Bell Labs

in the US. This invention will allow the miniaturization

of contemporary computers, which relayed on vacuum

tubes and solving two of its biggest problems: Its size

and its power consumption. In a few years a computer

passed from using a whole room?s space to fitting in a

suitcase, then to fit on a desk, to be the size of a notebook

and so on. The miniaturization process mostly followed a

linear pattern defined on 1965 by Gordon Moore5 Current

computers have transistors in its architecture whose size

is of 7nm.

The miniaturization of computers carried an exponential

growth in computational power that allowed ML models

to be applicable, and in the later decades to become

mainstream with open source projects as Scikit-learn,

TensorFlow and PyTorch.

The Digital Revolution gave another vital asset required

for applying ML algorithms: Data. As DOMO’s reports

on Data usage details [12], [13] 2.5 quintillion of bytes

were generated on every minute of the year 2017. During

this same year, 90% of all the Data humankind has ever

produced was generated. It is estimated that on year 2020

a new 1.7MB will be generated every second per person
living.

It was because of this joint context of easily available

computational power, and colossal quantities of Data that

drove the Machine Learning explosion at the beginning

of 21st century. Soon, ML models outmatched humans in

4Also called as the Third Industrial Revolution.
5Moore proposed in 1965 that the number of transistors in a micro-

processor doubles each year, he would later correct it to defend that said
doubling will happen every two years. For over 50 years this law has
prevailed.
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tasks as song recognition [14], handwriting recognition6,

face recognition [15], etc.

In this paper stress measurements during reliability test

are recorded by an AU capable to send the data to a

centralized data unit through a WiFi connection. Data

stored in the Raspberry Pi is then sent to a server where

data is processed. The data is transformed by removing the

outliers, filtering, labeling and scaling. A ML regression

technique is then applied to create a degradation model

by feeding a complete till full delamination data from a

single test vehicle. The model is then used to asses the

degradation state of other test vehicles.

2. Experiment
Accelerated reliability testing are used to stress the Test

Vehicles (TV). In this study air thermal shock chamber

was used, which consists in two separate chambers with

constant temperature, one at 150◦ and the other one at

−40◦ as shown in Figure 1. The basket containing the TVs

is moving up and down between chambers. The transition

time between chambers is relatively small making the

experiment suitable to accelerate the degradation of the

electronic packages.

Figure 1: Thermal Chamber procedure description.

The dwelling time was predetermined to provide a con-

dition where all components reach the uniform distribution

at target temperatures.

A. Test Vehicle

Thin Quad Flat Packages (TQFP) 100x100 pins with

encapsulated piezoresistive silicon based stress sensor are

mounted on a PCB. As shown in Figure 2 the functional

die is replaced by the stress sensor die.

Figure 2: TQFP Mounted on a PCB Test Vehicle.

The package silicon die consists of 8 sensors, with 60

stress measuring cells each, having a total of 480 stress

sensing cells. The packages were specially designed to

have low adhesion strength between the leadframe and

6Software that solve this task are called OCR, that stands for Optical
Character Recognition.

the molding compound. One of the way to do this was to

use oxidized leadframes in the packaging process. Also,

two molding compounds were used for packaging MC1

and MC2. In total six TVs were tested by performing

two separate experiments. Two TV are of type 1 molding

compound MC1_1, MC1_2 and another four of type 2

molding compound MC2_1...MC2_4, respectively. In this

paper only MC1_1 sample is used to show the stress

difference distribution and the SAM images in case of

delamination.

B. Stress Evaluation

In TQFP stress sensors are encapsulated as a regular die

to record the mechanical stresses during reliability tests.

In this paper TQFP contains 8 sensors with each 6 by 10

stress sensing cells. To evaluate the stresses the following

formulas have been used.

The relationship between the measured currents and the

stresses are :

D(σ) = σxx −σyy =
1

πp
44

IOUT − IIN

IOUT + IIN
(1)

σxy =
1

πn
11 −πn

12

IOUT − IIN

IOUT + IIN
(2)

where π11,π12,π44 are the piezoresistive coefficients of

silicon; and IIN , IOUT are the currents measured at the

input and output of the sensor, respectively. More details

can be found in Ref. [16], [17]

After the experiments were performed, data was pro-

cessed and only one measurement point per cycle is

extracted at the dwell time. Then the stress values at −40◦
are extracted from the values at 150◦ as follows:

D(σ)rel
i j = (σxx −σyy)

−40◦C − (σxx −σyy)
150◦C (3)

,where i = 1, ..,n is the number of measurement points,

j = 1, ...,480 is the number of sensing cells and D(σ)i j
are the relative stress difference.

C. Acquisition Unit

A dedicated acquisition unit was used to power, steer

and acquire data from the stress sensor. Additional im-

provements has been made to the AU to facilitate efficient

experiments. In terms of dimension, and weight, the

former AU is consisted by three board, it is 110 x 66

x 45 mm in size. The new AU has only one board, its

size is 90 x 71 x 20 mm. Shown in Figure 3.

In terms of speed, the former acquisition unit consumes

several minutes to collect data from 480 cells (8 sensor x

60 cells/sensor), at 12 bit accuracy. The new acquisition

unit has two ADCs, ADS1115 and ADS1015, by changing

I2C slave address value in I2C library, one can choose

between two ADC. When ADS1115 chosen, we can get
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Figure 3: Acquisition unit downsize.

16 bit accuracy, but it requires more time to go through

all 480 cells; When choose ADS1015, we still have 12

bit accuracy data, but faster measurements. As for other

functions, the new one has built-in WIFI module that

facilitates the connection with Raspberry Pi, and the wire-

less data transmission through WIFI is realized; Pi was

also added, because stress value calculation method, stress

prediction algorithms based on Neural Network (NN), are

all coded in Python and can run on Raspberry Pi. That

is to say, Pi is a microcomputer which can afford all the

functions in this task, and it is of course lighter, cheaper,

more convenient, and mobile than a PC. Meanwhile, real

time data processing becomes possible, because WIFI

connection can realize real time data transmission between

Pi and Arduino.

Figure 4: Data flow.

By realizing wireless WIFI connection between Ar-

duino and Pi (see Figure 4), we can imagine that Pi can

communicate with multiple Arduinos at same time. Pi has

the ability to generate its own network as a hot spot, and

Arduinos can have access to the hot spot, thus build the

grid that multiple Arduino transmit data to a common

central process Pi. So we can realize the in-situ stress

monitoring on multiple sensors and AU by one Pi.

D. Delamination validation through SAM images

SAM image of the sample was recorded at 0 cycles,

1170 Cycles and at the end. This can help in correlating

between the stress difference values and delamination. In

Figure 5 SAM images of the TQFP package targeting

the interface between copper pad/molding compound, die

attach/copper pad and die/die attach are shown. One image

was performed at the beginning of the test, showing no ini-

tial delamination. An intermediate picture at 1170 Cycles,

where initial delamination is detected, was performed. The

third picture was performed after 2500 temperature cycles

and more than 80% of delamination is found.

Figure 5: MC1_1 TV SAM image before and after the

reliability test. The delamination area is shown in red

color.

E. Data from Thermal Cycling Data

The in-plane mechanical stresses were recorded during

the entire test for all the 480 measuring cells. The AUs

were placed outside the chamber with a wire connection

with the samples inside. For visualization purposes av-

erage relative stress changes are calculated by averaging

over 480 cells as follows:

D(σ)average
j =

480

∑
1

D(σ)rel
i j (4)

The influence of delamination in the die attach over

the stress difference on top of the die is shown in Figure

6. An average value of stress per cycle is depicted by

using equation 4. The first observation is that the stress

values completely change after 900 Cycle reaching a

maximum change at 1300 Cycle. This behavior due to

the delamination is confirmed by the SAM image taken

at 1170 cycle. At this stage it is fair to assume that the

sensor is able to detect the structural damage given by

the delamination. For a better understanding of the stress

signal a FEM model is constructed.

The geometry and the loading conditions are the same

as in the experiment. First a component level TQFP is

used to establish the agreement between experiments and

simulation. This is also a reference for how the stress

distribution looks like in the healthy samples.

The values of relative stress along the x and y direction

on top of the die and the stress difference calculation

for the TQFP component alone from the simulation are

shown in Figure 7. This can give us a better understanding

of what the sensor can measure, which is the stress

difference.

The modelling predictions are compared with the ex-

perimental data in Figure 8. The results show good agree-

ment. The deviations are attributed to the uncertainties of

the stress sensor, geometry imperfections (variations) and
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Figure 6: Normal in-plane relative stress difference aver-

age along all 480 Cells for MC1_1 Sample.

the material properties used in the simulation. It is worth

mentioning that the minimum and maximum values of

stress difference are located near the edges. This can give

us later an indication of where the delamination is located.

Figure 7: TQFP component level mechanical stress at the

top of the die. Loading condition used in the simulation

is an environmental temperature of −40◦ and 150◦. The

stress values at −40◦ are extracted from 150◦ stress

values.

Figure 8: TQFP component level mechanical stress at

the top of the die experiment vs. simulation. Loading

condition used in the simulation and experiment is an

environmental temperature of −40◦ and 150◦. The stress

values at −40◦ are extracted from 150◦ stress values.

One way to get the stress values along x and y direction

when the delamination is present, is depicted in Figure

9. This visualization has the purpose to show the link

between delamination, the stresses along x and y direction

and the stress difference. Also, this is an efficient indica-

tion that the stress difference values are able to capture

the delamination.

The same amount of contact area shown in the SAM

image (Figure 5) is used for modeling the delamination

in the simulation. In the area where delamination is

considered, the interface mesh node is divided in two mesh

node with no connection. In the other areas node to node

connectivity is maintained.

Figure 9: Simulation mechanical stress at the top of the die

of the delaminated MC1_1 TV. Loading condition used in

the simulation is an environmental temperature of −40◦
and 150◦. The stress values at −40◦ are extracted from

150◦ stress values.

Figure 10: Simulation and experiment mechanical stress at

the top of the die of the delaminated MC1_1 TV. Loading

condition used in the simulation is an environmental

temperature of −40◦ and 150◦. The stress values at −40◦
are extracted from 150◦ stress values.

Figure 10 shows the contour plot of the relative stress

difference from both simulation and experiment with the

designated delamination area shown in the SAM image.

Even in this case the agreement is quite good between

the experiment and the simulation in the undelaminated

area, despite the limitation of the method used in case of

simulating the delamination area. Both plots show similar

stress distribution where the undelaminated area is present.

The distribution near the undelaminated area is similar

as in the case of Figure 8. Overlay pictures between the

stress difference and SAM image of both simulation and

experiment are shown in Figure 11. The top/bottom and

left/right stress distribution of maximum and minimum

values are exactly on top of the edge of the undelaminated

area.

Figure 11: MC1_1 TV overlay picture of stress difference

on top of SAM image. Both simulation and experiment

gives a very good indication where there is still contact

underneath the die.
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3. Degradation prediction

The amount of cells provides a very good resolution

of the stress difference distribution over the surface of

the silicon die. However, to predict the delamination by

just looking at the stress difference is not trivial. Machine

learning is used to cope with this problem. In this paper,

as an initial step a model is trained with the assumption

that the delamination happens linearly. The advantage of

this method is that it can provide a fast prediction degra-

dation of the TQFP. Relative stress difference average

of 6 samples during experiments are shown in Figure

12. In case of delamination all of them shows a similar

stress difference trend. The MC1_1 TV is used to train

the machine learning model, due to the nature of the

data. It contains stress behavior from the undelaminated

state, until fully delaminated state. We consider a fully

delaminated state, when the delamination does not further

propagate.

Figure 12: Normal in-plane stress difference average along

all 480 Cells for all samples.

A. Back Propagation Artificial Neural Network

Nowadays there is a set of techniques that shines

for their performance called Artificial Neural Networks

(ANN). A simple representation of a Feed-Forward Ar-

tificial Neural Network can be seen on Figure 13. By

themselves ANN are not a method, but a tool to enable the

collaboration between methods towards a common goal.

An ANN is a collection of Artificial Neurons, therefore it

is necessary to review what is it and what it does a single

Artificial Neuron (AN).

ANs have been inspired in biology in the way it keeps

a biological structure aiming to replicate a biological

function7 On Figure 14 it can be seen a comparison

7This is a common practice in Engineering: In the same fashion the
wing of a plane preserves its general structure, replicating a specific
function of a biological wing. ANs keep the structure of biological
neuron and aims to loosely replicate the biological function of a
biological neuron.

Figure 13: Visual representation of an Artificial Neural

Network.

(a) Biological neuron [18].

(b) Artificial Neuron.

Figure 14: Comparison between biological and artificial

neurons.

between a biological neuron (14a) and an artificial neuron

(14b).

The most basic model that can be used on an AN is

a Perceptron. This linear model was invented by Frank

Rosenblatt in 1958 [19].

Neural Networks consist of the following components:

• An input layer, x
• An output layer, y
• A set of weights and biases between each layer, W

and b
• A choice of activation function for each hidden layer,

σ

Having a set of data points organized in the matrix X
that is formed by individual data points vectors x. The

model comprises a mathematical function as in equation
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5.

y(x) = f (w× x)+b (5)

This means, if we know weight matrix w and bias vector

b , under the chosen activation function f , we can predict

unknown output value y, by known input vector x. Input

vector x is always known, so how to get weight matrix w,

and the bias vector b becomes the key problem, which is

exactly the purpose of ANN training purpose.

The following visualization of the working of a percep-

tron will be performed with the help of Figure 17.

A perceptron can have an arbitrary number of inputs

and a unique output.

On Figure 17 (a) a perceptron is represented as a circle

with two inputs and one output8.

• The inputs will be the values of the features of a data

point. For example, data point [2, 7] will be assigned

as in Figure 17 (b).

• Each dendrite of the perceptron has an assigned

"Weight" as shown on Figure 17 (c).

• The inputs are multiplied by the weight of its dendrite

as in Figure 17 (d).

• The summation of the values coming from the den-

drites is passed through an activation function and its

result given as output as in Figure 17 (e).

Most used activation functions are step, sign, sigmoid9,

tanh10 and ReLU11:

step(z) =
{

1 if z ≥ 0;

0 if z < 0.
(6)

sign(z) =
{

1 if z ≥ 0;

−1 if z < 0.
(7)

sigmoid(z) =
1

1+ e−z (8)

tanh(z) =
ez −1

ez +1
(9)

ReLU(z) = max(0,z) (10)

identity(z) = z (11)

The selection of the activation function depends on what

type of behavior the perceptron is designed to abstract

from the data that will feed it. Like this, a perceptron

with a sign activation function would be used for linear

classification tasks, a perceptron with an identity activa-

tion function would be used for linear regression and a

8The resemblance of a Perceptron to a biological neuron can be
noticed as the artificial dendrites mirrors biological ones and the output
an axon.

9Also called logistic function.
10Hyperbolic tangent function.
11Rectified linear unit.

Figure 15: zvsφ plot for Step, Sign and ReLU functions.

Figure 16: zvsφ plot for Sigmoid and Tanh functions.

perceptron with a sigmoid activation function would be

used for logistic regression.

Backpropagation (BP) is a method used in artificial

neural networks to calculate the error contribution of each

neuron after a batch is processed. This is used by an

enveloping optimization algorithm to adjust the weight

of each neuron, completing the learning process for that

case. We predict the input part of training data by the

current neural network, this is usually called forward

propagation. And we get a set of output data, which has

differences with the output part of the training data, this

is error. In optimization algorithm, this error is named

Figure 17: Example of perceptron learning algorithm.

2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)



loss function, our goal is to optimize the parameters of

the network to make the loss function reach its minimum

point. Which means the neural network fit the training

data and can represent the real model. Technically it

calculates the gradient of the loss function to reach the

optimization goal. It is commonly used in the gradient

descent optimization algorithm. It is also called backward

propagation of errors, because the error is calculated

at the output and distributed back through the network

layers to adjust all the parameters inside the network.

This BP method has limitations, because it is gradient

based optimization method, so BP is not guaranteed to

find the global minimum of the loss function, maybe just

a local minimum. This can be solved by making some

improvements, such as:

• add momentum factor to make learning rate adaptive

• training more times, then we may get the global

minimum at larger probability

• combining other optimization algorithms into BP,

for example Particle Swarm Optimization, Genetic

algorithm, etc.

Learning rate can be regarded as improvement step,

represent how far we take the next step towards the

negative gradient direction. If this value is big, we only

need several steps (iterations) to approach the minimum

point, which means faster convergence and time saving.

There are many rule-of-thumb methods for determining an

acceptable number of neurons to use in the hidden layers,

such as the following: the number of hidden neurons

should be between the size of the input layer and the size

of the output layer. Momentum factor it can be regarded as

an adjustment of the learning rate, to make the step length

no longer fixed, thus can realize large steps at beginning

to make loss function drop fast, and shrink the step when

approaching the minimum.

Table 1: Chosen parameters of BP NN

Parameter Value

Number of hidden neurons 100
Learning Rate 0.001

Iterations 2200
Momentum 0.31

For our application the input data contains the relative

stress difference from all the 480 cells during 2400

temperature cycles. The output data contains one vector

with values between 100 and 0 based on the assumption

that the delamination degradation happens linearly and it

start when the stresses are degrading. In Figure 18 the

details of such vector is shown, but also the testing data.

The model is trained based on minimizing the loss

function and the optimized neural network parameters are

shown in Table 1.

The stress difference data from the other 5 samples are

tested with the neural network model and the predictions

Figure 18: Training output and testing data.

Figure 19: Degradation Prediction of the BP NN Model .

are depicted in Figure 19. This percentage degradation

model is a fast tool to evaluate the package delamina-

tion status. Some of the packages indicates an apriori

delamination for examples MC2_3, MC2_4 and others

are showing that the delamination is yet to happen, for

example MC2_2.

Further work is required to improve the accuracy of the

neural network model, by feeding more data for training

and also using more efficient neural networks methods.

4. Conclusions

In this paper, a degradation model based on in-plane

stress measurements is proposed. Mechanical stresses are

able to capture structural change in the packages including

delamination. The BP NN model shows promising results

in a fast and automated way to estimate the delamination

inside the package. This non-intrusive method can be

used in testing new package designs, which can lead in
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better and fast design. Also, has the potential to be used

in Prognostics and Health Management for automotive

electronics. Future work should be focused in acquiring

more testing data for different designs and implementing

more efficient ML methods.
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