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Abstract

The piezoresistive silicon based stress sensor
has the potential to detect a precursor for the Prognostics
and Health Management (PHM) implementation in
automotive electronics. One solution to enforce reliability
in automotive electronics is the use of Machine Learning
(ML). One or more physical parameters are being
monitored, and algorithms are used to illustrate the health
state and predict remaining useful life based on the
current and past health information. Piezo-resistive stress
sensors are employed to measure the internal stresses
of electronic packages, an Acquisition Unit (AU) to
read out sensor data and a Raspberry Pi as PHM server
to perform evaluation. Accelerated tests in air thermal
chamber are performed to get time series data of the
stress sensor signals, with which we can know better
about how delamination develops inside the package.
In this study stress measurements are performed in
several electronic packages during the delamination. The
delamination is detected by the stress sensor due to the
continuous change of the stiffness and the local boundary
conditions causing the stresses to change. Moreover, the
stress change in multiple cells can give more information
regarding the delamination such as the location and its
state. Data preprocessing methods to remove outliers and
filter raw measurement results, and feature extraction
methods to capture only meaningful information by
reducing the data are chosen and applied to raw data. A
logical assumption is made regarding the data behavior
and delamination state, based on data analytics and with
Scanning Acoustic Microscope (SAM) images confirmed
the delaminated area. FEM simulation are used to provide
a qualitatively physical explanation of the stress change
due to the delamination. A prognostic model using neural
network is trained to estimate the degradation grade.
Back Propagation Neural Networks are chosen to provide
a fast and quick training for the mechanical stress data.

1. Introduction

There are several definitions of Reliability [1], [2].
In engineering [2], it is set as the "ability of a system
or component to perform its required functions under
stated conditions for a specified period of time". These
conditions refer to conditions like mechanical, thermal,
electrical specifications. In this definition, a system [3]

978-1-5386-8040-7/19/$31.00 ©2019 IEEE

is "a combination of interacting elements (components)
organized to achieve one or more stated purposes".

Reliability prediction methods date 70 years into the
past [4]. In that time, the concept of Reliability has been
extensively used on design, operation and maintenance
tasks. On the design stage of a product the concept of
Design for Reliability (DfR) [5] appears, in which a
model of the product is developed. This model is used
by the manufacturer to define the working conditions and
lifetime of the product that it will guarantee. A more
reliable component (or system) works longer hours on
tougher conditions on the operation stage; saving with this
maintenance, repairs and replacement costs.

There are two main approaches in reliability: A statistic-
based approach (like the Weibull model [6] or the fault tree
analysis [7] that considers the reliability of each compo-
nent to estimate the reliability of a system) or a physics-of-
failure-based approach [5] (like the use of Finite Element
Method (FEM) software to simulate loading conditions
and ensure that the component will perform at its design
capacity).

Both models does not predict the real status of a
singular component. As neither monitors the real time
state of the component. Their assessments are of statistical
relevance.

It is because of this that, for example, other techniques
as redundancy are usually used to ensure zero Downtime
(the period in which a system is unavailable) on relevant
components. But this solution requires having another
component identical in function as the original as backup
and this solution is not cost-effective.

With this new notion and the foreseeable advent
of widespread complex consumer grade systems as
autonomous vehicles, it becomes evident that a new
paradigm must be set to overcome the limitations of
current reliability models.

A. Automotive Electronics

A recent report by PwC [8] predicts that by 2020 the
% of total car cost used on automotive electronics will be
35%, and it will climb to 50% by 2030. The main reasons
for this predicted increase are:

o An increment in electronic systems quantity on the
vehicle required to keep and monitor the vehicles
efficiency required by regulation laws in the EU and
the US.
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« An increase in functionalities added by the manufac-
turers to improve the user experience. New electronic
systems (that includes new sensors, control units,
communication network and power supply) are added
to give the car new functions as assisted parking,
vehicle cruise speed control, infotainment, emergency
braking, etc).

¢ The push towards automotive driving adds new sys-
tems like radar, lidar, gps location and steering con-
trol that was not required on traditional autos.

The automotive industry is a particular as consumer
demands on its final product are higher than on other prod-
ucts. Car manufacturers must ensure that their electronic
products last longer and ensure their functionality.

With the industry moving forward towards offering
consumer-grade autonomous driving vehicles, there has
never been higher requirements to automotive electronics
in terms of power efficiency, size and weight and espe-
cially in Reliability.

B. Machine Learning

ML should not be confused with Artificial Intelligence
(AI). Al is the concept of a machine exhibiting intelligence
similar to humans or animals' Al is divided into Weak
and Strong AIl. The former is an Al that can perform
a narrowly defined set of tasks or just one task. The
latter is an Al that is capable of applying intelligence to
a problem and even showing consciousness. This means
that the machine exhibiting Strong Al is not constrained to
just one set of problem, as its knowledge and intelligence
generalizes to all sets of tasks.

Strong Als do not exist up to date. All current Als are
Weak as they specialize into solving a set of tasks tightly
constrained and work using curated data sets?, differing
from the human learning experience.

For mentioning a set of examples:

o Google’s search algorithm

o Google’s image recognition algorithm
o A predictive keyboard algorithm

¢ An email spam filter

« AlphaGo® [9]

ML is a subset of artificial intelligence (Al) that creates
systems to learn and predict outcomes without manually
programming a computer and is also known as predictive
analytics or statistical learning" [10]. It is a set of algo-
rithms and techniques focused to learn from data. Here,
data is an organized collection of measures and/or classes;
and learning means the ability to get information from

IThis is what is called natural intelligence.

2It is considered best practice to preprocess the data before feeding
it to a learning algorithm to expedite the learning process. In occasions
it is mandatory to preprocess the data as learning would be impossible
otherwise.

3 AlphaGo is an Al developed by Google’s DeepMind to play the board
game Go. Its the first Al to beat a Go’s professional player without the
use of handicaps on a 19x19 board.

data that would generalize to other sets of data. This last
is what differences ML techniques from other statistical
tools. They focus on the generalization aspect of the data
analysis and not only in creating a model that works with
the data at hand. A ML model is general, it is valid for
new data points the model has never been exposed to.

ML is not a recent research field. One of the first steps
in this direction is considered to be taken by Thomas
Bayes [11] with "An Essay towards solving a Problem
in the Doctrine of Chances" on 1763, where he stated
the bases for Bayesian Statistics, a statistical theory in
which the evidence about the real state of the world is
expressed in terms of degree of belief. Scattered advances
were performed on the early 18th century as the prolific
mathematician Adrien-Marie Legendre publishes the Least
Squares method on 1805 and Pierre-Simon Laplace for-
malizes what is known today as Baye’s Theorem on 1812.
No more significant progress would be done until mid 19th
century.

The context of the mid-19th century contemplates the
beginning of the Digital Revolution® that was triggered by
invention of the transistor on 1947 by John Bardeen, Wal-
ter Brattain, and William Shockley at AT&T’s Bell Labs
in the US. This invention will allow the miniaturization
of contemporary computers, which relayed on vacuum
tubes and solving two of its biggest problems: Its size
and its power consumption. In a few years a computer
passed from using a whole room?s space to fitting in a
suitcase, then to fit on a desk, to be the size of a notebook
and so on. The miniaturization process mostly followed a
linear pattern defined on 1965 by Gordon Moore> Current
computers have transistors in its architecture whose size
is of 7nm.

The miniaturization of computers carried an exponential
growth in computational power that allowed ML models
to be applicable, and in the later decades to become
mainstream with open source projects as Scikit-learn,
TensorFlow and PyTorch.

The Digital Revolution gave another vital asset required
for applying ML algorithms: Data. As DOMO’s reports
on Data usage details [12], [13] 2.5 quintillion of bytes
were generated on every minute of the year 2017. During
this same year, 90% of all the Data humankind has ever
produced was generated. It is estimated that on year 2020
a new 1.7MB will be generated every second per person
living.

It was because of this joint context of easily available
computational power, and colossal quantities of Data that
drove the Machine Learning explosion at the beginning
of 21st century. Soon, ML models outmatched humans in

4Also called as the Third Industrial Revolution.

SMoore proposed in 1965 that the number of transistors in a micro-
processor doubles each year, he would later correct it to defend that said
doubling will happen every two years. For over 50 years this law has
prevailed.
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tasks as song recognition [14], handwriting recognitioné,

face recognition [15], etc.

In this paper stress measurements during reliability test
are recorded by an AU capable to send the data to a
centralized data unit through a WiFi connection. Data
stored in the Raspberry Pi is then sent to a server where
data is processed. The data is transformed by removing the
outliers, filtering, labeling and scaling. A ML regression
technique is then applied to create a degradation model
by feeding a complete till full delamination data from a
single test vehicle. The model is then used to asses the
degradation state of other test vehicles.

2. Experiment

Accelerated reliability testing are used to stress the Test
Vehicles (TV). In this study air thermal shock chamber
was used, which consists in two separate chambers with
constant temperature, one at 150° and the other one at
—40° as shown in Figure 1. The basket containing the TVs
is moving up and down between chambers. The transition
time between chambers is relatively small making the
experiment suitable to accelerate the degradation of the
electronic packages.

Figure 1: Thermal Chamber procedure description.

The dwelling time was predetermined to provide a con-
dition where all components reach the uniform distribution
at target temperatures.

A. Test Vehicle

Thin Quad Flat Packages (TQFP) 100x100 pins with
encapsulated piezoresistive silicon based stress sensor are
mounted on a PCB. As shown in Figure 2 the functional
die is replaced by the stress sensor die.

ic circuitry
dlng compoun
SII‘ESS sensing cells

Figure 2: TQFP Mounted on a PCB Test Vehicle.
The package silicon die consists of 8 sensors, with 60
stress measuring cells each, having a total of 480 stress
sensing cells. The packages were specially designed to
have low adhesion strength between the leadframe and

Sl - by
ok eells

6Software that solve this task are called OCR, that stands for Optical
Character Recognition.

the molding compound. One of the way to do this was to
use oxidized leadframes in the packaging process. Also,
two molding compounds were used for packaging MC1
and MC2. In total six TVs were tested by performing
two separate experiments. Two TV are of type 1 molding
compound MCI1_1, MC1_2 and another four of type 2
molding compound MC2_1...MC2_4, respectively. In this
paper only MC1_1 sample is used to show the stress
difference distribution and the SAM images in case of
delamination.

B. Stress Evaluation

In TQFP stress sensors are encapsulated as a regular die
to record the mechanical stresses during reliability tests.
In this paper TQFP contains 8 sensors with each 6 by 10
stress sensing cells. To evaluate the stresses the following
formulas have been used.

The relationship between the measured currents and the
stresses are :

1 lour —IIv

D(0) =GOy — Oy = —5
(0) = Gu =0y Ty lour +1iv

1 Tout —IIn
Oy = 2
= 75,1'] - Tc?z lour +1IIn @

where m1,m12,T44 are the piezoresistive coefficients of
silicon; and I;y, Ipyr are the currents measured at the
input and output of the sensor, respectively. More details
can be found in Ref. [16], [17]

After the experiments were performed, data was pro-
cessed and only one measurement point per cycle is
extracted at the dwell time. Then the stress values at —40°
are extracted from the values at 150° as follows:

—40°C

D(G)zr]el (Cxx — Oyy) — (Cxx — Oyy) 10°C - (3)

,where i = 1,..,n is the number of measurement points,
j=1,...,480 is the number of sensing cells and D(c);;
are the relative stress difference.

C. Acquisition Unit

A dedicated acquisition unit was used to power, steer
and acquire data from the stress sensor. Additional im-
provements has been made to the AU to facilitate efficient
experiments. In terms of dimension, and weight, the
former AU is consisted by three board, it is 110 x 66
x 45 mm in size. The new AU has only one board, its
size is 90 x 71 x 20 mm. Shown in Figure 3.

In terms of speed, the former acquisition unit consumes
several minutes to collect data from 480 cells (8 sensor x
60 cells/sensor), at 12 bit accuracy. The new acquisition
unit has two ADCs, ADS1115 and ADS1015, by changing
12C slave address value in I2C library, one can choose
between two ADC. When ADS1115 chosen, we can get
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Figure 3: Acquisition unit downsize.

16 bit accuracy, but it requires more time to go through
all 480 cells; When choose ADS1015, we still have 12
bit accuracy data, but faster measurements. As for other
functions, the new one has built-in WIFI module that
facilitates the connection with Raspberry Pi, and the wire-
less data transmission through WIFI is realized; Pi was
also added, because stress value calculation method, stress
prediction algorithms based on Neural Network (NN), are
all coded in Python and can run on Raspberry Pi. That
is to say, Pi is a microcomputer which can afford all the
functions in this task, and it is of course lighter, cheaper,
more convenient, and mobile than a PC. Meanwhile, real
time data processing becomes possible, because WIFI
connection can realize real time data transmission between
Pi and Arduino.

Acquisition Unit

———————— -
Wire to |~ "
igital 'O pins R Pi
Sensor digital VO pins ) 0 o Yun Mini :WnFn “;iatsﬂ'»{lgr Ayl

: I
: SPI Con#nunicaliunl l WiFi

1
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ry 1
: m%?fﬁle 1 Gateway

R e 1

Figure 4: Data flow.

By realizing wireless WIFI connection between Ar-
duino and Pi (see Figure 4), we can imagine that Pi can
communicate with multiple Arduinos at same time. Pi has
the ability to generate its own network as a hot spot, and
Arduinos can have access to the hot spot, thus build the
grid that multiple Arduino transmit data to a common
central process Pi. So we can realize the in-situ stress
monitoring on multiple sensors and AU by one Pi.

D. Delamination validation through SAM images

SAM image of the sample was recorded at O cycles,
1170 Cycles and at the end. This can help in correlating
between the stress difference values and delamination. In
Figure 5 SAM images of the TQFP package targeting

the interface between copper pad/molding compound, die
attach/copper pad and die/die attach are shown. One image
was performed at the beginning of the test, showing no ini-
tial delamination. An intermediate picture at 1170 Cycles,
where initial delamination is detected, was performed. The
third picture was performed after 2500 temperature cycles
and more than 80% of delamination is found.

1170 Cycles 2500 Cycles

0 Cycles

ENo Delamination
Delamination

Figure 5: MC1_1 TV SAM image before and after the
reliability test. The delamination area is shown in red
color.

E. Data from Thermal Cycling Data

The in-plane mechanical stresses were recorded during
the entire test for all the 480 measuring cells. The AUs
were placed outside the chamber with a wire connection
with the samples inside. For visualization purposes av-
erage relative stress changes are calculated by averaging
over 480 cells as follows:

480
D(o);"* = Y. D(o) 4)
1

The influence of delamination in the die attach over
the stress difference on top of the die is shown in Figure
6. An average value of stress per cycle is depicted by
using equation 4. The first observation is that the stress
values completely change after 900 Cycle reaching a
maximum change at 1300 Cycle. This behavior due to
the delamination is confirmed by the SAM image taken
at 1170 cycle. At this stage it is fair to assume that the
sensor is able to detect the structural damage given by
the delamination. For a better understanding of the stress
signal a FEM model is constructed.

The geometry and the loading conditions are the same
as in the experiment. First a component level TQFP is
used to establish the agreement between experiments and
simulation. This is also a reference for how the stress
distribution looks like in the healthy samples.

The values of relative stress along the x and y direction
on top of the die and the stress difference calculation
for the TQFP component alone from the simulation are
shown in Figure 7. This can give us a better understanding
of what the sensor can measure, which is the stress
difference.

The modelling predictions are compared with the ex-
perimental data in Figure 8. The results show good agree-
ment. The deviations are attributed to the uncertainties of
the stress sensor, geometry imperfections (variations) and
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Figure 6: Normal in-plane relative stress difference aver-

age along all 480 Cells for MC1_1 Sample.

(=1 T

the material properties used in the simulation. It is worth
mentioning that the minimum and maximum values of
stress difference are located near the edges. This can give
us later an indication of where the delamination is located.

D(0) - simulation
o _ - -0

Ty - Simulation

Figure 7: TQFP ¢ the
top of the die. Loading condition used in the simulation
is an environmental temperature of —40° and 150°. The
stress values at —40° are extracted from 150° stress
values.

D(0) - Experiment

D({o) - Simulation

Y Y8

Figure 8: TQFP component level mechanical stress at
the top of the die experiment vs. simulation. Loading
condition used in the simulation and experiment is an
environmental temperature of —40° and 150°. The stress
values at —40° are extracted from 150° stress values.

One way to get the stress values along x and y direction
when the delamination is present, is depicted in Figure
9. This visualization has the purpose to show the link
between delamination, the stresses along x and y direction
and the stress difference. Also, this is an efficient indica-
tion that the stress difference values are able to capture
the delamination.

The same amount of contact area shown in the SAM
image (Figure 5) is used for modeling the delamination
in the simulation. In the area where delamination is

considered, the interface mesh node is divided in two mesh
node with no connection. In the other areas node to node
connectivity is maintained.

Ox - Simulation D(a) slmn

-
j

[
pb
@s ~
i '.,./' 2
1 :
P i
Figure 9: Simulation mechanical stress at the top of the die
of the delaminated MC1_1 TV. Loading condition used in
the simulation is an environmental temperature of —40°
and 150°. The stress values at —40° are extracted from

150° stress values.

SAM

&

1

D(@) - Experiment D(g) - simulation
5 y — = 3]

Figure 10: Simulation and experiment mechanical stress at
the top of the die of the delaminated MC1_1 TV. Loading
condition used in the simulation is an environmental
temperature of —40° and 150°. The stress values at —40°
are extracted from 150° stress values.

Figure 10 shows the contour plot of the relative stress
difference from both simulation and experiment with the
designated delamination area shown in the SAM image.
Even in this case the agreement is quite good between
the experiment and the simulation in the undelaminated
area, despite the limitation of the method used in case of
simulating the delamination area. Both plots show similar
stress distribution where the undelaminated area is present.
The distribution near the undelaminated area is similar
as in the case of Figure 8. Overlay pictures between the
stress difference and SAM image of both simulation and
experiment are shown in Figure 11. The top/bottom and
left/right stress distribution of maximum and minimum
values are exactly on top of the edge of the undelaminated
area.

D(0) - Experiment

D(0) - Simulation

Figure 11: MC1_1 TV overlay picture of stress difference
on top of SAM image. Both simulation and experiment
gives a very good indication where there is still contact
underneath the die.
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3. Degradation prediction

The amount of cells provides a very good resolution
of the stress difference distribution over the surface of
the silicon die. However, to predict the delamination by
just looking at the stress difference is not trivial. Machine
learning is used to cope with this problem. In this paper,
as an initial step a model is trained with the assumption
that the delamination happens linearly. The advantage of
this method is that it can provide a fast prediction degra-
dation of the TQFP. Relative stress difference average
of 6 samples during experiments are shown in Figure
12. In case of delamination all of them shows a similar
stress difference trend. The MC1_1 TV is used to train
the machine learning model, due to the nature of the
data. It contains stress behavior from the undelaminated
state, until fully delaminated state. We consider a fully
delaminated state, when the delamination does not further
propagate.

—— MCI_I
—— MC21

— MC23
— MC2 4

— MCI1_2
——— MCI 1 Healthy

D(6) Average [MPa]

" '
sssdesssssbas
W v

35 dedeecnbonnnad
—40 t

sssdessssslssnsnnsal
' v

0 200 400 600 800 1000 1200 1400
Time [Cycle]

Figure 12: Normal in-plane stress difference average along
all 480 Cells for all samples.

o

A. Back Propagation Artificial Neural Network

Nowadays there is a set of techniques that shines
for their performance called Artificial Neural Networks
(ANN). A simple representation of a Feed-Forward Ar-
tificial Neural Network can be seen on Figure 13. By
themselves ANN are not a method, but a tool to enable the
collaboration between methods towards a common goal.
An ANN is a collection of Artificial Neurons, therefore it
is necessary to review what is it and what it does a single
Artificial Neuron (AN).

ANSs have been inspired in biology in the way it keeps
a biological structure aiming to replicate a biological
function’ On Figure 14 it can be seen a comparison

"This is a common practice in Engineering: In the same fashion the
wing of a plane preserves its general structure, replicating a specific
function of a biological wing. ANs keep the structure of biological
neuron and aims to loosely replicate the biological function of a
biological neuron.

Input layer

Hidden layer i Outputlayer

Figure 13: Visual representation of an Artificial Neural
Network.

Dendrite
Auon terminal

4 Outputs
= 7 Myelin sheat
7 J 1 axon =
Inputs -
(a) Biological neuron [18].
Input 0
Output
Input 1

(b) Artificial Neuron.

Figure 14: Comparison between biological and artificial
neurons.

between a biological neuron (14a) and an artificial neuron
(14b).

The most basic model that can be used on an AN is
a Perceptron. This linear model was invented by Frank
Rosenblatt in 1958 [19].

Neural Networks consist of the following components:

o An input layer, x

« An output layer, y

o A set of weights and biases between each layer, W
and b

« A choice of activation function for each hidden layer,
c

Having a set of data points organized in the matrix X
that is formed by individual data points vectors x. The
model comprises a mathematical function as in equation
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y(x) = flwxx)+b (5)

This means, if we know weight matrix w and bias vector
b , under the chosen activation function f, we can predict
unknown output value y, by known input vector x. Input
vector x is always known, so how to get weight matrix w,
and the bias vector b becomes the key problem, which is
exactly the purpose of ANN training purpose.

The following visualization of the working of a percep-
tron will be performed with the help of Figure 17.

A perceptron can have an arbitrary number of inputs
and a unique output.

On Figure 17 (a) a perceptron is represented as a circle
with two inputs and one output®.

o The inputs will be the values of the features of a data
point. For example, data point [2, 7] will be assigned
as in Figure 17 (b).

o Each dendrite of the perceptron has an assigned
"Weight" as shown on Figure 17 (c).

o The inputs are multiplied by the weight of its dendrite
as in Figure 17 (d).

o The summation of the values coming from the den-
drites is passed through an activation function and its
result given as output as in Figure 17 (e).

Most used activation functions are step, sign, sigmoid®,
tanh'® and ReLU!':

1 ifz>0;
step(z) = { 0 ifz<0. ©)
. 1 if z > 0;
sign(z) = { ~1 ifz<0. ™
. 1
sigmoid(z) = e (3)
-1
h(z) = 9
tanh(z) e )
ReLU (z) = max(0,z) (10)
identity(z) =z (11)

The selection of the activation function depends on what
type of behavior the perceptron is designed to abstract
from the data that will feed it. Like this, a perceptron
with a sign activation function would be used for linear
classification tasks, a perceptron with an identity activa-
tion function would be used for linear regression and a

8The resemblance of a Perceptron to a biological neuron can be
noticed as the artificial dendrites mirrors biological ones and the output
an axon.

9 Also called logistic function.

10Hyperbolic tangent function.

HRectified linear unit.

mm— Step P
== = Sign 7
| == RelLU

Figure 15: zvs¢ plot for Step, Sign and ReL U functions.

1.5

= Sigmoid
10+ Tanh

0.5

Figure 16: zvs¢ plot for Sigmoid and Tanh functions.

perceptron with a sigmoid activation function would be
used for logistic regression.

Backpropagation (BP) is a method used in artificial
neural networks to calculate the error contribution of each
neuron after a batch is processed. This is used by an
enveloping optimization algorithm to adjust the weight
of each neuron, completing the learning process for that
case. We predict the input part of training data by the
current neural network, this is usually called forward
propagation. And we get a set of output data, which has
differences with the output part of the training data, this
is error. In optimization algorithm, this error is named

Input 0 Input 0
Output Qutput

Irprat 1 Inp;n 1 (b)

Input O e 05,

Input 0
=2 2

Output Output

(d)

Output

Figure 17: Example of perceptron learning algorithm.
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loss function, our goal is to optimize the parameters of
the network to make the loss function reach its minimum
point. Which means the neural network fit the training
data and can represent the real model. Technically it
calculates the gradient of the loss function to reach the
optimization goal. It is commonly used in the gradient
descent optimization algorithm. It is also called backward
propagation of errors, because the error is calculated
at the output and distributed back through the network
layers to adjust all the parameters inside the network.
This BP method has limitations, because it is gradient
based optimization method, so BP is not guaranteed to
find the global minimum of the loss function, maybe just
a local minimum. This can be solved by making some
improvements, such as:

¢ add momentum factor to make learning rate adaptive

o training more times, then we may get the global
minimum at larger probability

o combining other optimization algorithms into BP,
for example Particle Swarm Optimization, Genetic
algorithm, etc.

Learning rate can be regarded as improvement step,
represent how far we take the next step towards the
negative gradient direction. If this value is big, we only
need several steps (iterations) to approach the minimum
point, which means faster convergence and time saving.
There are many rule-of-thumb methods for determining an
acceptable number of neurons to use in the hidden layers,
such as the following: the number of hidden neurons
should be between the size of the input layer and the size
of the output layer. Momentum factor it can be regarded as
an adjustment of the learning rate, to make the step length
no longer fixed, thus can realize large steps at beginning
to make loss function drop fast, and shrink the step when
approaching the minimum.

Table 1: Chosen parameters of BP NN

Parameter | Value
Number of hidden neurons 100
Learning Rate 0.001
Iterations 2200
Momentum 0.31

For our application the input data contains the relative
stress difference from all the 480 cells during 2400
temperature cycles. The output data contains one vector
with values between 100 and O based on the assumption
that the delamination degradation happens linearly and it
start when the stresses are degrading. In Figure 18 the
details of such vector is shown, but also the testing data.

The model is trained based on minimizing the loss
function and the optimized neural network parameters are
shown in Table 1.

The stress difference data from the other 5 samples are
tested with the neural network model and the predictions

—— MCI_1 Testing —— MCI _1 Training
110 —
100 4-4
00 4.
80 4
70 4 e
60 +-4------i-
50 4-4
30 1-4 :
20
10 4
04

Degradation [%]

0 900 1200 1500 1800 2100 2400
Time [Cycle]

=4
[
==
=

Z 1.

Figure 18: Training output and testing data.
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Figure 19: Degradation Prediction of the BP NN Model .

are depicted in Figure 19. This percentage degradation
model is a fast tool to evaluate the package delamina-
tion status. Some of the packages indicates an apriori
delamination for examples MC2_3, MC2_4 and others
are showing that the delamination is yet to happen, for
example MC2_2.

Further work is required to improve the accuracy of the
neural network model, by feeding more data for training
and also using more efficient neural networks methods.

4. Conclusions

In this paper, a degradation model based on in-plane
stress measurements is proposed. Mechanical stresses are
able to capture structural change in the packages including
delamination. The BP NN model shows promising results
in a fast and automated way to estimate the delamination
inside the package. This non-intrusive method can be
used in testing new package designs, which can lead in
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better and fast design. Also, has the potential to be used
in Prognostics and Health Management for automotive
electronics. Future work should be focused in acquiring
more testing data for different designs and implementing
more efficient ML methods.
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