
Journal of Micromechanics and Microengineering

TOPICAL REVIEW

Using flexural MEMS to study and exploit nonlinearities: a review
To cite this article: Sidhant Tiwari and Rob N Candler 2019 J. Micromech. Microeng. 29 083002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.241.230.151 on 12/06/2019 at 08:27

https://doi.org/10.1088/1361-6439/ab23e2
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/74122669/Middle/IOPP/IOPs-Mid-JMM-pdf/IOPs-Mid-JMM-pdf.jpg/1?


1 © 2019 IOP Publishing Ltd  Printed in the UK

Journal of Micromechanics and Microengineering

S Tiwari and R N Candler

Printed in the UK

083002

JMMIEZ

© 2019 IOP Publishing Ltd

29

J. Micromech. Microeng.

JMM

10.1088/1361-6439/ab23e2

8

Journal of Micromechanics and Microengineering

1.  Introduction

1.1.  Why study nonlinearities?

Generally speaking, one decides to study a topic because it 
either possesses useful properties that can be exploited, or it 
creates negative effects that must be mitigated. In the case of 
nonlinearities in microsystems, there is a bit of both. Studying 
nonlinear behavior is particularly important for micro- and 
nanoscale devices, as it emerges rapidly when devices are 
miniaturized to these size scales [1, 2]. Research on nonlinear 
dynamics in micro- and nanosystems has been a growing area 
for nearly two decades. For a summary of research in the first 
decade, readers are referred to three thorough reviews from that 
time period [3–5]. During the last decade, understanding of 
nonlinear phenomena at the micro/nanoscale has continued to 
advance. Additionally, techniques that use nonlinearity advan-
tageously have been explored, and new application spaces 
have begun to emerge. The following review details reasons 

why one would (or would not) want nonlinearity in microelec-
tromechanical systems, provides background on nonlinearity 
in microelectromechanical systems (MEMS), and summarizes 
prior research organized by the type of nonlinear process. For 
brevity, this review focuses on recent experimental work per-
taining to nonlinearity in flexural structures, which are widely 
studied and utilized in MEMS devices.

1.2.  Nonlinearities can be harmful

1.2.1.  Frequency stability.  One of the most obvious problems 
of nonlinearities in flexural MEMS is the resulting depend
ence of resonant frequency with amplitude, known as the 
amplitude-frequency effect (A-f effect). Many of the appli-
cations of these devices depend on operating in a resonant 
mode at a particular frequency, including timing devices [6], 
frequency filters [7], resonant accelerometers [8], resonant 
energy harvesters [9], and gravimetric sensors [10]. For one 
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example, nonlinearities can limit the power handling of radio 
frequency (RF) front end filters by causing shifts in their reso-
nant frequency and motional impedance, leading to distortion 
of the passband [7].

1.2.2.  Phase noise in oscillators.  A high signal-to-noise ratio 
is desirable for reduced phase noise in oscillators. As the drive 
level is increased, nonlinear effects will at some point become 
significant, which is a manifestation of the aforementioned A-f 
effect. This dependence eventually leads to a bifurcation in the 
amplitude-frequency curve, which typically limits the ampl
itude at which the oscillators are operated since the frequency 
of a device is dependent on its history beyond this limit [11]. 
This limitation on amplitude places a maximum on the drive 
current that can be applied, which results in a relative increase 
in far-from-carrier phase noise [12]. Also, the dependence of 
frequency on amplitude converts amplitude noise to near-car-
rier phase noise [13, 14]. Finally, nonlinear coupling can allow 
out-of-band interferers to couple into the band [15].

1.2.3.  Sensors.  Many common MEMS sensors (e.g. acceler-
ometers, gyroscopes) are operated in the linear regime in order 
to avoid hysteresis and additional noise associated with nonlin-
earities. From a purely practical sense, nonlinearities can make 
interpretation of sensor output more complicated as in the case 
of electrostatic detection of large displacements, a common 
occurrence for MEMS gyroscopes [7]. Also, emerging systems 
that couple mechanics with other phenomena, such as optics 
[16], bring along new classes of nonlinearities to be considered. 
Furthermore, at small size scales it is important to understand 
nonlinearities because they can often establish the fundamental 
limits of detection for a variety of sensing platforms [17].

1.3.  Nonlinearities can be helpful

1.3.1.  Phase noise in oscillators.  While the previous sec-
tion asserts that nonlinearities lead to increased phase noise in 
oscillators, there have been observations that operating at spe-
cific points in the nonlinear regime decreases oscillator phase 
noise [18, 19]. Alternatively, nonlinear coupling of resonant 
modes in a single structure [20], or coupling of separate reso-
nant structures [21], can stabilize the amplitude, and therefore 
frequency, of a desired mode.

1.3.2.  Frequency stability.  Again, there are both harmful and 
helpful aspects to nonlinearities. The transition from quartz 
resonators to silicon resonators has driven efforts for new 
ideas in minimizing the temperature coefficient of frequency 
because, unlike quartz, silicon does not have a crystalline 
orientation with zero temperature coefficient of frequency. 
A range of techniques for enhancing frequency stability are 
described below [22, 23].

1.3.3.  Instruments for scientific discovery.  In many cases, micro-
mechanical devices can be used as instruments to investigate 
small-scale phenomena, such as the Casimir force [24] or funda-
mental limits dictated by coupling of Brownian motion between 
resonant modes [25]. In many cases, widely used linear models 

begin to break down at small scales and need to be reformulated 
[26]. Additionally, atomic force microscopy uses the nonlinear 
van der Waals force to map surface morphology, magnetism, 
charge, and other properties with extreme precision [4].

1.3.4.  Sensors and other devices.  The pull-in phenomenon of 
electrostatically driven MEMS is desired in some devices, such 
as MEMS switches, and can be analyzed to reduce switching 
voltage [27]. Additionally, the fundamental quadratic relation-
ship between voltage and electrostatic force is frequently used 
to shift noise out of band, thereby improving resolution of dis-
placement measurements [28]. Nonlinearity can also be used 
for mechanical computation [29]. In gyroscopes, improve-
ments can be observed in some parameters, such as angle ran-
dom walk and bias instability, even when operated above the 
critical bifurcation amplitude [30]. Finally, extreme sensitivity 
has been observed in parametric sensors [3].

2.  Nonlinear forces in MEMS

2.1.  An illustrative example: the Duffing oscillator

The dynamics of a forced oscillator depend on the sum of 
three forces: (1) a restoring force represented by Hooke’s 
law, Fres = −kx, (2) a driving force that is proportional to 
some external stimulus, Fdrv = Afd cos(ωt) where fd  is the 
applied stimulus amplitude (such as an applied electric field), 
and (3) a dissipative force, Fdis = bẋ. The forces can have 
a variety of origins (mechanical, electrical, magnetic, etc). 
Starting from Newton’s Law, the equation  of motion for a 
forced oscillator is

mẍ + bẋ + kx = Afd cos(ωt),� (1)

where x, ẋ, and ẍ are the displacement, velocity, and accelera-
tion of the system, respectively. The distinguishing factor of 
a nonlinear system is that at least one of the force coefficients 
(m , b, k, or A) are not constant, but are instead functions of the 
dynamic variables of the system, such as the velocity, posi-
tion, stimulus amplitude, or elapsed time.

Figure 1.  Duffing nonlinearity beyond the critical amplitude. 
Notice the hysteresis between increasing (red circles) and 
decreasing (blue triangles) frequency sweeps. (Inset) Resonant 
frequency increasing at higher drive powers. The red curve plotted 
through the peaks of the curves is known as the ‘backbone curve’. 
Reprinted with permission from [31]. Copyright 2013 American 
Chemical Society.
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The most common nonlinear MEMS device is that of the 
Duffing oscillator [1, 4, 9, 11, 14, 17], where the oscillator 
spring constant depends quadratically on its displacement. 
This leads to the nonlinear equation of motion

mẍ + bẋ + kx + βx3 = Fdrv,� (2)

where β is the cubic nonlinearity term that results from the 
nonlinear spring. Because of the nonlinearity, the resonant 
frequency now varies quadratically with the oscillator ampl
itude (figure 1 inset). For negative values of β the resonant 
frequency will continually decrease with increasing force, 
known as spring softening. For positive values the resonant 
frequency will increase, leading to spring hardening. Beyond 

a critical amplitude (xc =
»

32
9
√

3
1

|β|Q , where Q is the qual-

ity factor) the frequency response develops a bifurcation and 
becomes multivalued, as shown in figure 1.

The most distinguishing feature of an experimental measure-
ment of the Duffing nonlinearity is that the concave portion of 
the theoretical frequency response is inaccessible. This branch 
is unstable and approaching it from one stable branch causes 
the resonator to jump to the other stable branch. As a result, the 
frequency response now has hysteresis because adiabatically 
sweeping frequency up is different from when sweeping fre-
quency down, which is not possible in a linear system. However, 
this is only true for an open-loop measurement. Using closed-
loop control, the feedback stabilizes the oscillator and makes 
the full frequency response curve accessible [32, 33].

2.2.  Sources of nonlinearity

Nonlinearity in MEMS systems can come from a large variety 
of sources. Mechanical nonlinearities have two origins, intrin-
sic material effects and geometric nonlinearity [11, 34], and can 
be modelled with a displacement dependent spring constant.

k = k0
(
1 + k1x + k2x2 + . . .

)
.� (3)

For flexural devices k1 is generally zero due to the symme-
try of the structures, but can be nonzero for other geometries, 
such as bulk acoustic wave resonators [11]. Geometric non-
linearity dominates when there is large displacement, as the 
structure deformation can no longer be ignored and leads to 
a dynamic change in the spring constant that is a function 
of the displacement. Due to their large displacements, geo-
metric nonlinearity is one of the most significant sources of 
nonlinearity in flexural MEMS devices [31, 34]. The nonlin-
ear coefficients can be predicted by classical Euler–Bernoulli 
beam theory [11, 35], but the assumptions do not always hold 
for all mode shapes [26]. Geometric nonlinearity can be tuned 
by using a composite structure, as was done by Asadi et al 
[36]. In this work, the authors studied a silicon cantilever that 
is anchored to the substrate with a polymer structure. The elas-
tic anchor undergoes significant tension during resonance and 
introduces the nonlinearity in the system. Structural design 
can also be used to do the reverse and remove nonlinearity, as 
was done by Chen et al [37]. In their design of clamped-free 
semicircular beam resonators, the free end is engineered to 
release its axial tension and eliminate the cubic nonlinearity. 

Material effects manifest as higher order stiffness constants 
and are more prominent in bulk mode devices [11], as their 
displacements are too small for geometric nonlinearity to 
significantly contribute on its own. In silicon, these material 
nonlinearities have been shown to be strongly dependent on 
doping and crystal orientation [34].

Another major source of nonlinearity in MEMS resonators 
is the electrostatic force. The electrostatic force between two 
parallel plates is given by [11, 12, 38]

Fes =
εAV2

2(d − x)2 ≈ εAV2

2d2

Å
1 +

2
d

x +
3
d2 x2 +

4
d3 x3 + . . .

ã
,

� (4)
where ε is permittivity, A is the plate area, and d is the ini-
tial spacing between plates. This force is proportional to 
the square of the voltage, making it intrinsically nonlinear. 
Superimposing a large DC bias on top of the AC drive signal is 
a commonly used technique that approximates linear behavior, 
similar to the way that transistors can be biased to a quiescent 
point. However, this nonlinearity can be desirable as a method 
to cancel parasitic feedthrough signals during device operation 
[28, 39]. The DC bias for resonant beams is typically applied 
in a way to balance the force between symmetric electrodes, 
thereby removing the even terms in equation (4). As a result, 
the cubic term is often the major contributing factor for the elec-
trostatic nonlinearity [14, 38], though higher order terms can 
come into play for high bias voltages or high drive amplitudes 
[23, 40]. This cancellation of the symmetric term also reduces 
the effect of the pull-in instability [41], where the DC bias 
voltage overcomes the mechanical restoring forces and causes 
the two electrode plates to come into contact. Electrostatic 
forces also lead to a dynamic pull-in instability when large AC 
voltages are involved, typically requiring a much lower volt
age amplitude than the static case [42]. In silicon resonators 
the dominant nonlinearity can be readily determined, as the 
electrostatic nonlinearity leads to spring softening and the geo-
metric nonlinearity leads to spring hardening [12].

A large number of other factors can contribute to nonlin-
earity, depending on the device structure and environment. 
Devices with small actuation gaps experience nonlinear 
surface forces (such as the Casimir force) that begin to signifi-
cantly influence the dynamics [24, 43]. For example, recent 
work on resonant switches has shown the ability to tune the 
nonlinear, repulsive van der Waals contact force by modi-
fying the surface coating [43]. Variation in temperature has 
been found to change the strength of nonlinearity, through the 
temperature dependence of a device’s material properties [8]. 
Optical interactions in the characterization of opto-mechani-
cal devices can lead to a number of nonlinear processes [16]. 
Like electrostatic forces, magneto-mechanical forces are also 
intrinsically nonlinear [44].

2.3.  Effects of scaling on nonlinearity

As discussed above, mechanical nonlinearity in flex-
ural devices is often geometry dependent [12]. Following 
Kaajakari’s treatment of a clamped-clamped beam resonator 
[11], the critical value of input energy for a high Q resonator is

J. Micromech. Microeng. 29 (2019) 083002
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Ec =

ˆ xc

0
k (x) xdx =

1
2

k0x2
c
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1
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c
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≈ 1

2
k0x2
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0
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2

QY
3
2

hL7
0

� (5)
where ω0 is the linear resonant frequency, ρ is the material den-
sity, Y is the Young’s modulus, h is the beam height, and L0 is 
the beam length. It is not difficult to see that, for the same fre-
quencies and materials, resonators become dramatically easier 
to drive into nonlinearity as they scale down in size. This limits 
the dynamic range of the resonator and becomes an issue for 
nanomechanical sensors [1]. For very high aspect ratio devices, 
such as nanotube or nanowire systems [17], this is especially 
detrimental as thermomechanical noise increases with minia-
turization and limits the dynamic range on the low end.

As dimensions shrink to the micron-scale and below, size 
effects due to material inhomogeneities, such as dislocations 
and polycrystallinity, cannot be ignored and begin to influence 
the mechanics [45]. Measurements by Lam et al of the deflec-
tion of epoxy micro-cantilevers found that the normalized 
bending rigidity increases for thinner beams due to these size 
effects [46]. Similar experiments were done by McFarland 
et  al on injection molded polypropylene MEMS cantile-
vers, again finding that micron-scale beams were stiffer than 
expected [47]. Liu et al studied microscale copper wires of 
various diameters under torsion, revealing that the normalized 
initial yield torque increases for smaller diameters [48]. Tang 
et al applied micro/nanoindentation measurement and atomic 
force microscopy to investigate length-scale factors for sili-
con cantilevers [49, 50]. Models incorporating size effects 
have found that they have a significant effect on resonator 
dynamics. Analysis by Dai et al on nonlinear cantilevers dem-
onstrated that increasing the length-scale parameter, which 
represents the size of the material microstructure, causes the 
stiffness, and therefore resonant frequency, to increase [51]. 
Work by Farokhi et al showed that resonant beams with an 
initial static deflection can actually switch from the softening 
type of nonlinearity to the hardening type if the size effect 
is strong enough [52]. In electrostatic devices, the increased 
stiffness from the size effect results in the effective strength of 
the electrostatic nonlinearity to be weaker. Models incorporat-
ing the size effect predict higher voltages for the electrostatic 
pull-in instability, matching experimental data much better 
than classical mechanical models [53, 54].

3.  Analytical approaches

While this review is focused on experimental work on nonlin-
earity in MEMS, it is worthwhile to briefly inform the reader 
about analytical approaches that have been used to address prob-
lems in nonlinear MEMS. By far the most popular approach is 
to start with Euler-Bernoulli beam theory and to then reduce 
the problem to something tractable using the Galerkin method 
for discretization [55–57]. A variation of this was used by 
Kacem et  al to study bifurcations due to Duffing nonlineari-
ties, using the method of averaging and a formulation of the 
electrostatic force that includes fringing fields [56, 58]. Besides 
Euler–Bernoulli theory, several others elected to use varia-
tional methods to derive the equations of motion of the MEMS 
structures [17, 40, 59]. In the case of a beam with appreciable 

shear deformation, one author elected to use Timoshenko beam 
theory, while also incorporating thermal effects to investigate 
thermal elastic dissipation (TED) [60].

Another popular approach that has been used instead of, and 
in conjunction with, the previously discussed methods is the 
method of multiple time scales [23, 40, 61, 62]. This approach 
separates the problem into two times variables, one fast mov-
ing variable that captures the dynamics of the oscillator and 
a slow moving one that captures the amplitude variations. 
Mechanical theories incorporating length-scale parameters, 
such as strain gradient elasticity and modified couple stress 
theory, have also been used in tandem with Euler–Bernoulli 
beam theory to study the influence of size effects in nonlinear 
resonant beams [51, 52, 63–65]. Outside of purely mechanical 
models, an electrical model for a nonlinear MEMS oscillator 
was developed, incorporating not only MEMS nonlineari-
ties but nonlinearities in the oscillator circuitry as well [66]. 
Atalaya et  al presented a sophisticated model of nonlinear-
ity in nanomechanical systems, using a quantum approach to 
study decoherence and dissipation of low frequency eigen-
modes [67].

4.  Research on nonlinear dynamics

4.1.  Engineering nonlinearities to enhance performance

Initial work in engineering nonlinearities was generally 
focused on ways to cancel nonlinearities or otherwise reduce 
their impact. That remains an active area of research, but it has 
been joined by a more recent development, exploiting nonlin-
earities in ways which can be used to enhance performance. 
As will be seen below, the bulk of the work is centered around 
the performance of oscillators for timing devices, with addi-
tional work involving resonant gyroscopes.

Before getting into specific examples, it is worthwhile 
to ask the question why nonlinearity is a problem in res-
onators. Simply put, the resonant frequency of devices 
is altered when nonlinearities are introduced, typically 
through mechanical stiffening or electrostatic softening. 
Changes in resonant frequency are problematic for devices 
such as timing references, which need to output a stable fre-
quency. Resonant sensors are also impacted because their 
frequency output should only be affected by the property 
being measured and not by their drive amplitude. In the field 
of oscillators and timing devices, the change in frequency 
caused by increasing nonlinearity with increasing amplitude 
is called the amplitude-frequency effect (A-f effect). Any 
amplitude noise will be converted to frequency noise by 
the A-f effect, which is particularly problematic for timing 
devices. Due to this coupling, the motivation for operating 
oscillators at higher amplitude for improved signal-to-noise 
ratio is diminished because increasing the amplitude also 
increases the noise.

4.1.1.  Cancellation of nonlinear forces in resonators.  Early 
work by Kozinsky et al experimentally demonstrated can-
cellation of the third order mechanical stiffening non-
linearity using the second order electrostatic softening 
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nonlinearity in nanomechanical beams, with the aim of 
increasing the dynamic range of nanomechanical sensors 
[33]. Shortly after, Agarwal et al explored this type of non-
linearity cancellation in order to allow for a higher drive 
current in MEMS resonators, as shown in figure  2 [14]. 
In both cases a DC bias was used to tune the electrostatic 
nonlinearity, which allows a sweep through regimes where 
mechanical and electrical nonlinearities each dominated, 
and find an optimal bias point in the middle. Subsequent 
work investigated the scaling of nonlinearities in clamped-
clamped beams to provide guidelines for those wanting to 
design resonators [12].

Design can also be used to control the nonlinear proper-
ties of a resonant beam. In one example, shape optimization 
allowed for reduction of the stiffness nonlinearity, a result that 
was first theoretically shown [68] and then experimentally 
demonstrated [69].

4.1.2.  Exploiting nonlinear forces to enhance resonator per-
formance.  In the past several years, interest has expanded 
beyond the question of how to mitigate nonlinearities, and sev-
eral efforts have been undertaken to examine ways in which 
nonlinearity can be utilized. Much of this work has focused on 
improving the performance of oscillators. As described above, 
the term resonator will be used to describe a device operated 
in its open-loop mode, whereas an oscillator describes the 
closed-loop system comprising the resonator and its sustain-
ing feedback circuit. When characterizing nonlinear behavior, 
resonators will only show part of the Duffing curve, depend-
ing on which direction the frequency is being swept. When 
characterizing oscillators, however, the entire curve can be 
mapped out by controlling the phase in the system [32]. Kenig 
et al used this fact to analyze nonlinear oscillators for regimes 
where the phase could be set to minimize total phase noise in 
the system [70]. These concepts were subsequently demon-
strated in nanomechanical clamped beams by the same group 
[18], as seen in figure 3.

Dependence of resonant frequency on ambient temperature 
is well-known and very important for commercial oscillators. 
Even structures that are immune to thermally induced anchor 
strain will have a temperature coefficient of frequency (TCF) 
because their material properties (e.g. Young’s modulus) 
depend on temperature. Quartz, a material traditionally used 

for resonators, has crystalline directions that have a zero TCF 
and can therefore be manufactured to have low TCF for a rea-
sonable range of temperatures. Silicon, however, has no such 
special crystalline direction, which has been a limiting factor 
for adoption of silicon resonators. One method recently dem-
onstrated for stabilizing the resonator frequency is coupling 
of the nonlinear A-f effect with the temperature coefficient of 
quality factor (TCQ). For this work, the key concept is that 
a quality factor that changes with temperature translates to 
an amplitude that changes with temperature. Defoort et  al 
showed that an operating point could be chosen such that a 
change in temperature would induce a change in quality fac-
tor, and the resulting change in amplitude would induce an A-f 
effect that would counteract the normal change in TCF. Using 
this method, the authors measured a 25×  reduction in TCF as 
compared to the linear case [22].

Canceling nonlinearities in resonators, while generally 
useful, also gives rise to other factors that must be consid-
ered. One of these factors is the synchronization range. When 
a device cannot be driven at its exact resonant frequency, 
synchronization range is a measure of how close the driving 

Figure 2.  Tuning and cancellation of nonlinearities using a DC bias voltage. (a) mechanical nonlinearities dominate (b) electrostatic 
nonlinearities dominate (c) bias region where nonlinearities cancel (d) output current at the onset of Duffing bifurcation is enhanced 
~2×  when nonlinearities are canceled. Reprinted from [14], with the permission of AIP Publishing.

Figure 3.  Resonator amplitude versus normalized frequency (Ω) 
at various levels of driving power. Open loop response shown by 
squares and solid lines, displaying Duffing at higher power levels and 
jump to the lower stable branch after the peak amplitude. Spheres 
represent results from closed loop oscillation, which can map out the 
entire Duffing curve, including regions with two amplitude solutions 
for a given frequency. Reprinted figure with permission from [18], 
Copyright 2013 by the American Physical Society.

J. Micromech. Microeng. 29 (2019) 083002
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frequency must be to still excite resonance in the device. 
This is particularly relevant for cases where there is a desire 
to synchronize multiple resonators, such as improving fre-
quency stability in timing applications. The authors of one 
study showed that the synchronization range grows mono-
tonically for a single type of nonlinearity (e.g. mechanical) 
but decreases to a minimum when nonlinearities cancel and 
then grows more rapidly as higher order nonlinearities subse-
quently begin to dominate [23].

Canceling mechanical nonlinearities with electrostatic 
nonlinearities in resonators was discussed above for timing 
applications. This technique has also been applied to reso-
nant quad-mass gyroscopes by Taheri-Tehrani et al [30]. The 
work investigated optimal biasing to cancel nonlinearities 
and reduce the amplitude-frequency effect. Surprisingly, the 
authors found that the angle random walk was lower where 
the amplitude-frequency effect was larger (i.e. in a highly non-
linear regime). Angle random walk is a property related to the 
noise that is viewed as a buildup of error in the sensor readout 
of angle over time. The fact that the noise actually increased 
at the point where electrostatic and mechanical nonlinearities 
were canceled suggests a more complex story, which remains 
an area of open study.

4.2.  Bifurcations and multistability

After the onset of the Duffing nonlinearity, a portion of the 
frequency response splits into two meta-stable branches and 
becomes double-valued. The frequencies at which the jumps 
between branches occur are called the bifurcation points and 
operating at these points leads to a number of interesting 
phenomena.

Early work studying resonator dynamics at these bifur-
cation points was done by Stambaugh et  al using torsional 
polysilicon resonators [71]. In these experiments, the reso-
nators were driven at the high amplitude branch near a 
bifurcation point and noise was injected into the driving 
signal. Since the bifurcation points are meta-stable, noise 
injected into the system makes it possible for the resonator 
to escape the high amplitude state to the low amplitude state, 
with the average transition rate being exponentially dependent 

on the amplitude of the noise. Switching between these meta-
stable states has also been investigated by Almog et al as a 
method for signal amplification, called stochastic resonance 
[72]. In this work, a resonator was driven at a point of equal 
transition rates between the high and low amplitude branches, 
and the drive signal was amplitude modulated. When the opti-
mal amount of noise is injected into the driving signal, the 
resonator undergoes stochastic resonance. During stochastic 
resonance the resonator jumps from one state to the other in 
synchronization with the modulation signal, which greatly 
amplifies the displacement. These amplitude jumps near the 
bifurcation points can be utilized for nonlinear resonant sen-
sors that potentially have much higher sensitivity than their 
linear counterparts, as was demonstrated by Kumar et al [73]. 
Linear resonant chemical sensors typically measure the shift 
in resonance frequency due to the mass loading of adsorbed 
particles. In the case of the nonlinear sensor developed by 
Kumar et al, the device is driven at a constant frequency at 
the low amplitude state near the bifurcation point. The output 
amplitude is measured, and particle adsorption is signaled by 
the transition to the high amplitude state.

In electrostatic silicon resonators, a dominant electrostatic 
nonlinearity leads to spring softening, while a dominant 
mechanical nonlinearity leads to spring hardening. For inter-
mediate levels of DC bias ‘mixed behavior’ is possible, where 
large drive power causes a hardening response, but even 
larger drives cause a softening response as the electrostatic 
nonlinearity begins to dominate [21, 56, 58, 74, 75], as shown 
in figure 4. Because there is simultaneously spring harden-
ing and softening, there are now two hysteresis loops within 
the frequency response and four bifurcation points. First ana-
lytically predicted [58], this regime of electro-mechanical 
nonlinearity was experimentally demonstrated in 2009 by 
Kacem et al [56].

Sobreviela et al demonstrated that mixed behavior can be 
used to mitigate A-f noise by operating at a top bifurcation point 
[74], allowing for higher signal levels than previous work on 
canceling the third-order nonlinearity [12, 14, 76]. Subsequent 
work using a closed-loop oscillator found that operating at 
the top mechanical and bottom electrical bifurcation points 
yielded Allen deviation superior to the linear case, leveraging 

Figure 4.  Different types of nonlinear behavior possible by tuning strength of spring softening and spring hardening behavior. Reprinted 
from [56], with the permission of AIP Publishing.
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the simultaneous reduction of A-f noise and phase feedback 

noise (a result of the infinite value of ∂φ∂f  at a bifurcation point) 
[75]. A closed-loop oscillator using a pair of coupled resona-
tors has also been demonstrated, improving the SNR by 30 dB 
by operating at the top electrical nonlinearity [21]. Operating 
at this point improved stability for shorter integration times but 
was worse than the linear mode of operation for integration 
times longer than 0.1 s. This is because the higher order noise 
mixing processes are more significant in the nonlinear regime.

Nonlinear forces can lead to bi-stability in ways other than 
hysteresis in the frequency domain. For example, MEMS 
cantilevers with integrated permanent magnets have been 
shown to have two equilibrium bending states due to the non-
linear force from a neighboring permanent magnet [77]. When 
operated in this configuration, the cantilever loses the tradi-
tional Lorentzian frequency response and now has a low-pass 
filter type response. This device is designed to be a mechanical 
energy harvester, using this technique to improve the harvest-
ing bandwidth.

4.3.  Parametric processes

Parametric systems are generally defined by the presence of 
time varying parameters (e.g. mass, damping, stiffness). In 
the world of micro/nanosystems, parametric systems typically 
involve sinusoidal modulation of one of these parameters, 
usually the stiffness. A typical parametric system with a para-
metrically modulated stiffness can be described by [78]

ẍ + bẋ +
(
ω2

0 + h cos (ωpt)
)

x + βx3 + ηx2ẋ = 0,
�

(6)

where ω0 is the natural frequency of the resonator, and ωp is the 
parametric drive frequency, which is driven with amplitude h, 
and η is the coefficient of nonlinear damping. Solutions to this 
equation define regions of natural frequency and parametric 
drive amplitude where parametric excitation can be achieved 
(figure 5).

Use of parametric amplification in micro/nanosystems is 
frequently of interest for sensing applications because extreme 
sensitivity is possible between stable and unstable regions of 
parameter space. For sensing, a large jump in amplitude occurs 
in the transition from the unstable to the stable regions. This 
transition can be induced with a very small change in one of 
the parameters (e.g. mass). The review papers by Rhoads et al 
in 2008 and 2010 thoroughly cover parametrically-excited 
systems up to that point [3, 5], and this section will focus on 
work that occurred following that review.

In the area of parametric sensing, early work assessed 
the potential of parametric MEMS devices for mass sens-
ing, focusing on how mechanical and electrical nonlinearities 
affect the stability regions of parametric oscillation [80]. 
Subsequent work from the same research group used paramet-
ric amplification to detect trace amounts of chemicals with a 
limit of detection of 13.3 parts per trillion [81]. The research-
ers combined knowledge of the system dynamics with a 
scheme that keeps a stable vibration amplitude by changing 
the frequency. The change in frequency is used as an indicator 
of adsorbed or desorbed mass. In the space of inertial sensors, 
Nitzan et al used geometric stiffness nonlinearity to paramet-
rically amplify the Coriolis force via modulation of the sense 
axis, thereby creating a sensor whose parametric amplification 
was self-induced (i.e. no external parametric driving signal is 
required) [82].

Parametric control can also be used for device calibration. 
Lajevardi et al, used control of spring softening to calibrate 
drift in commercial accelerometers [83]. Calibration of 
accelerometers in the field is a vexing problem because it is 
extremely difficult to ‘turn off’ the input of acceleration for 
the purposes of calibration. To solve this problem, the authors 
electrostatically modulated the stiffness of the device, allow-
ing them to distinguish between actual acceleration and 
parasitic capacitance.

The Roukes group demonstrated parametric amplification 
in nanomechanical devices in 2009 [84] Following that initial 
demonstration, the group began investigating methods to use 
parametric driving to reduce phase noise in oscillators with 
initial theoretical work [70]. Following that, Villanueva et al 
experimentally demonstrated an oscillator topology that uses 
nonresonant parametric feedback [85]. The oscillator induces 
motion in the device by modulating a physical parameter of 
the resonator at 2ω0, as opposed to direct drive at ω0. In this 
work, nonlinear stiffness is modulated by controlling the gain 
and phase from the feedback circuit. The purported advan-
tages of this type of system over oscillators with direct drive 
are increased drive amplitude and frequency tunability. The 
authors observed improvements in frequency stability in phase 
noise for this oscillator as compared to an oscillator based on 
direct drive, and they noted that a combination of direct and 
parametric drive could potentially be used to further improve 
frequency stability.

Other groups have also pursued investigations in frequency 
stabilization and frequency tuning in parametric systems. In 
the field of frequency stabilization, Kacem et al used a para-
metric effect to mitigate the 5th order electrical softening 
nonlinearity [59]. The authors used direct drive of resonators, 

Figure 5.  Plot showing stable regions for parametric system. δ 
represents the square of the natural frequency (ω2

0), and ε is related 
to the amplitude of the parametric drive signal 

( h
2

)
. Reproduced 

from [79]. CC BY 4.0.
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but included a superharmonic driving component at twice the 
resonant frequency to cancel the nonlinearity. For frequency 
tuning, Shmulevich et al, used a tapered comb drive architec-
ture to create a parametric resonator whose frequency could 
be tuned by a DC voltage but would be unaffected by the 
amplitude of the structure’s motion [86]. Additional work by 
the same group showed the device architecture was frequency 
tunable without any distortion of the shape of the instability 
windows due to this tapered structure, [87] and higher order 
resonances were subsequently investigated [88].

Work by Jia et al investigated the use of parametric reso-
nance for frequency tunability and bandwidth, with the goal 
of increasing the bandwidth of vibration energy harvesters 
[79]. In this work, the authors use piezoelectrically actuated 
membranes with a proof mass in the middle of the mem-
brane. The device is actuated to a sufficient amplitude, such 
that the nonlinearity of the membrane stiffness is significant; 
this modulation of the stiffness with membrane displacement 
drives the parametric resonance. Additional motivation for 
this work was scientific exploration of higher orders of para-
metric resonance (up to 28 were observed in this work for 
undamped membranes), as this work and several others have 
noted the ability of micro/nanoscale systems to access higher 
order modes of parametric resonance typically not seen in 
their macroscale counterparts [3, 89].

As opposed to other work that applied a stimulus to con-
trol where on the stability diagram the devices was operating, 
work by Karabalin et al manipulated the shape of the diagram 
itself around an existing stimulus [78]. This was achieved 
using two coupled nanomechanical resonators and modulat-
ing the stability diagram by applying a voltage that controlled 
the coupling strength between the two resonators. The authors 
note that this method for modulating the coupling could be 
used as an extremely sensitive charge detector or for other 
applications that involve sensing oscillating electric fields.

4.4.  Frequency mixing and conversion

A fundamental property of linear systems is that the response 
frequency is identical to the driving force frequency. Any 
frequency mixing must then come from a nonlinearity in the 
system, which has both advantages and disadvantages. For 
example, frequency mixing can enable extremely low noise 
measurements of a sensor [28]. Frequency mixing can be also 
useful when it enables higher frequency signals in communi-
cations networks to be down-converted to a comfortable range 
of resonant frequencies for micromechanical devices [90]. On 
the other hand, in communication applications frequency con-
version could have a detrimental effect if it allows out of band 
interferers to shift into the band of interest [15].

As mentioned in the previous paragraph, frequency mixing 
can be utilized to enable extremely low noise measurements 
of sensor displacement. One example that is widely used is 
electrostatic amplitude modulation (EAM). EAM leverages 
the fact that the electrostatic force varies quadratically with 
the applied voltage, F ∝ V2. By placing an AC carrier signal 
on top of the DC bias, the output signal can be modulated 

to be a different frequency than the parasitic feedthrough of 
the drive signal. Using this method is more complicated in 
devices with large displacements, since electrostatic nonline-
arities arise in the parallel plate capacitances and require more 
complex analysis [28].

More recent work used this type of mixing to investigate 
the fundamental limits of frequency fluctuation [91]. By mix-
ing down the output signal to a lower frequency, the authors 
were able to mitigate the effects of parasitic capacitance while 
still avoiding 1/f  noise. Other physical mechanisms can also 
be used for mixing. Magnetoelastic transduction in micro-
mechanical systems has been investigated for its potential 
to control magnetic fields at small scales. In one example, a 
cantilever heterostructure of magnetic and piezoelectric thin 
films was used to demonstrate magnetoelastic frequency dou-
bling [44]. The magnetic film was poled in such a way that 
an applied RF magnetic field with frequency ω  would create 
a mechanical vibration, and a corresponding output voltage 
from the piezoelectric, at 2ω . Potential applications of this 
approach include miniature RFID tags that are immune to 
reflected signals and noise isolation for measurement of mag-
netoelectric-based antennas.

Nonlinear mixing in a single structure can also lead to 
interesting output. For example, Ganesan et al demonstrated 
a phononic frequency comb via parametric coupling by 
driving the device off resonance with sufficient power [92]. 
Subsequent work by the same group investigated the space 
of multiple multimode regimes for these phononic frequency 
combs [93].

4.5.  Nonlinearly coupled resonances

Linearly coupled MEMS resonators have been well estab-
lished [94–96], with applications such as filters and sensors. 
The aforementioned frequency mixing from nonlinear pro-
cesses gives rise to new possibilities for coupled resonators, 
allowing for resonances far apart in frequency to couple.

Mahboob et  al investigated the dynamics of a microme-
chanical resonator coupled with a nanomechanical resonator 
embedded inside of it [97]. When driven into resonance, the 
nanoresonator modifies the local tension in the larger micro-
resonator, lowering the spring constant and resonant frequency 
of the microresonator through the nonlinear mechanical cou-
pling. This change in the microresonator frequency response 
is found to vary quadratically with the displacement of the 
nanoresonator, even when the nanoresonator is driven past the 
onset of the Duffing nonlinearity.

Frequency mixing from nonlinearity allows a resonator 
to couple and excite other resonance modes within itself, a 
process called ‘internal resonance’ [20, 98] (figure 6). For 
example, it has been demonstrated that a silicon resonator 
with a hardening cubic nonlinearity will increase in resonant 
frequency with drive power until its peak amplitude shifts to 
a frequency 1/3 that of a higher frequency mode [20]. At this 
point the spring hardening immediately stops, as any addi-
tional drive power serves to drive the higher frequency mode 
instead of the primary mode. As a consequence of the higher 
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frequency mode absorbing any amplitude fluctuations, the 
frequency stability of the primary mode is greatly increased. 
The authors observed a window of amplitude values where 
the minimum Allan deviation of the fundamental mode was 
improved by two orders of magnitude. A large enough drive 
power will overcome the internal resonance and cause the 
spring hardening to resume. The higher frequency mode can 
also act as a sort of rechargeable battery [98]. When driven to 
internal resonance, energy from the primary mode is trans-
ferred to the higher frequency mode. When the excitation is 
shut off, this energy is now transferred back to the primary 
mode, which allows the mode to keep a steady amplitude for a 
coherence time set by the original drive signal strength.

Sarrafan et  al investigated using geometric nonlinearity 
to couple two normally decoupled modes in a tuning fork 
resonator [99]. Unlike the previously mentioned instances of 
internal resonance, this work utilizes subharmonic excitation. 
A translational ‘spring’ mode is driven to a large displace-
ment, which causes appreciable rotation of the anchor. The 
normally rigid anchor now serves as a way to excite internal 
resonance, pumping energy to a rotational ‘pendulum’ mode 
that has a frequency half that of the spring mode.

To investigate nonlinear mode-coupling in NEMS devices, 
Matheny et  al developed a characterization method with a 
high degree of linearity and sensitivity by using piezoelectric 
excitation and piezoresistive sensing [35]. This method was 
used to characterize the mode-coupling of the sub-harmonic 
and super-harmonic excitations, finding excellent agreement 
for the nonlinear coefficients measured and those predicted 
through Euler–Bernoulli beam theory. Modes do not have to 
be exact integer harmonics of each other to couple. Li et al 
demonstrated a method of coupling two modes together using 
an external pump signal and applied it to carbon nanotube 
resonator [100]. The frequency of the pump is set to be the 
frequency difference between the modes to be coupled and 
the coupling strength is determined by the pump amplitude. 
For a weak pump power of  −25 dBm the frequency response 

remains unchanged. With a pump of  >−20 dBm, the two 
modes begin to significantly couple, and normal mode split-
ting, characteristic of coupled oscillators, was observed.

4.6.  Nonlinear dissipation processes

Nonlinear energy dissipation, distinguished by a drive ampl
itude dependence of the damping, is a relatively unexplored 
area in MEMS nonlinearity when compared to our previously 
discussed topics [101, 102]. A common way to model non-
linear dissipation is with the van der Pol–Duffing equation  
[56, 101–105]:

mẍ + bẋ + kx + βx3 + ηx2ẋ = Fdrv.� (7)

Here nonlinear damping is represented by the coefficient η. 
As with all nonlinear processes, characterization of nonlin-
ear dissipation processes is a challenging issue. One method 
is to measure the device at several drive powers, normalizing 
each output by the drive power [103]. Nonlinear coefficients 
can then be extracted by measuring how much the normalized 
amplitude decreases as drive power is increased (figure 7). 
Polunin et al developed a characterization method using only a 
single ring-down measurement, bypassing the need for several 
measurements at different drive powers in typical nonlinear 
characterization [104, 105]. Using this approach, they are able 
to determine the nonlinear damping coefficient, as well as the 
cubic and 5th order nonlinear spring constant terms.

Despite the wide use of the van der Pol–Duffing model, 
the actual mechanisms for nonlinear damping are varied and 
often poorly understood. In a study by Zaitsev et  al using 
PdAu doubly-clamped beams, no clear mechanism for the 
nonlinear damping is found but it is proposed that geometric 
nonlinearity is a contributing factor, with linear damping from 
the material stiffness becoming nonlinear through the resona-
tor’s geometric nonlinearity [106]. Squeeze-film damping is 
a nonlinear process as well, presenting an issue for energy 
harvesters that have large displacements [107]. Work on an 

Figure 7.  Normalized amplitude with different drive powers for a 
resonator with nonlinear dissipation. Reprinted from [103] with the 
permission of AIP Publishing.Figure 6.  Internal resonance stabilizing spring hardening behavior. 

Reproduced from [20]. CC BY 4.0.
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atomic force microscope (AFM) cantilever with an embedded 
nanotube found that nonlinear damping in the nanotube to be 
significant for the system as a whole, with the magnitude of 
the damping being consistent with viscoelastic domain wall 
loss in a multi-domain nanotube [31]. In a study on the effect 
of metallic coatings on MEMS cantilevers, it was found that 
the coatings introduce nonlinear damping into the device, 
though the actual mechanism is not known [108]. Nonlinear 
damping has also been shown to be temperature dependent, 
with work by Imboden et al on diamond resonators showing a 
transition from linear to nonlinear damping below 77 K [109].

Nonlinearity can affect damping in ways outside of drive 
amplitude dependence. For example, it has been demonstrated 
that a resonance coupled to a higher frequency mode through 
internal resonance can have an increased damping rate since 
both modes dissipate the energy (figure 8) [110]. During 
the ring-down experiments, it was that found past a critical 
amplitude the decay rate becomes that of the primary mode 
as the nonlinear coupling between modes is now too weak. 
Miao et al studied the temperature dependence of the qual-
ity factor in graphene membrane resonators and found that 
the predominant source of damping in from the linewidth 
broadening caused by nonlinear coupling to thermally excited 
modes [111]. It has also been shown that nonlinear damping 
can also be accidentally induced by phase errors in feedback 
loops when working with a nonlinear resonator [112].

5.  Conclusion

In the past decade, nonlinearities in MEMS devices have 
seen increased interest across several fronts. Early research 
in MEMS resonators focused on canceling nonlinearities to 
improve the drive current, but were later leveraged to optim
ize the phase noise and frequency stability in oscillators. 
Cancellation of nonlinearities was later applied to sensors, 

such as resonant gyroscopes, which demonstrated improved 
performance in some cases. Bifurcations caused by nonlinear-
ities have been embraced, finding applications in the further 
enhancement of oscillator stability. Parametric processes 
in MEMS devices moved beyond initial demonstrations of 
parametric resonance to applications utilizing parametric 
processes to enhance performance, such as improved sensi-
tivity in chemical sensors and increased bandwidth in energy 
harvesters. In the area of frequency mixing/conversion, use 
of inherent nonlinearity of electrostatic actuation has sus-
tained its popularity for high resolution capacitive detection. 
Recently, the use of new materials and methods have emerged, 
such as frequency doubling via magnetoelastic materials and 
investigations of phononic frequency combs. Frequency 
mixing has been exploited to enable nonlinear coupling of 
different resonant modes, leading to new observations of phe-
nomena, such as internal resonance. Research on nonlinear 
dissipation process has only begun to scratch the surface of 
otherwise very complex systems, with much more room to 
explore in the future. Arguably the most striking trend of the 
past decade is the evolving viewpoint on nonlinearities, from 
a nuisance that should be minimized to a feature that can be 
exploited for improved performance.
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