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Abstract Many material and mechanical systems,
such as magnetorheological (MR) dampers used for
reducing vibration in engineering systems, have long-
standing modeling and control problems because of
their nonlinear hysteresis behavior. Existing hystere-
sis models, including discontinuous and piecewise-
continuous functions, are nonideal for numerical com-
putation, stability analysis, and control design. This
study links the hysteresis characteristics of a Duffing-
like equation and an input–output system through a
very subtle observation. Thus, the hysteresis dynam-
ics are approximated using a traceable, second-order
nonlinear ordinary differential equation with an inertial
element. In addition, the hysteresis stability associated
with energy dissipation can be analyzed using the Lya-
punov method in a more deterministic and systematic
manner than has previously been possible. Experimen-
tal work and hysteresis identification of a realistic MR
damper device are presented to illustrate the proposed
Duffing-like modeling techniques.
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1 Introduction

Various techniques for modeling hysteresis dynam-
ics in the time domain, including Bingham plas-
tic/biplastic [1–3], nonlinear biviscous [2,4], nonlinear
viscoelastic-plastic [2,5], Bouc-Wen [1,6–11], LuGre-
based [12], ant other dynamics-based models [13,14],
have been proposed. Although these models have been
successfully used to describe a wide class of hys-
teresis and magnetorheological (MR) systems, they
exhibit problems when used for parameter identifi-
cation, numerical computation, stability analysis, and
design optimization because these nonideal mathemat-
ical models combine a class of elementary functions
[15] that can be untraceable, nondeterministic, dis-
continuous, and lack physical meaning, such as tanh,
signum, and absolute functions. Although several stud-
ies have attempted to improve modeling efficacy and
accuracy, an extremely fundamental problem remains
in practice; the use of these effective models, which
involve discontinuous and piecewise fitting functions,
is disadvantageous for deterministically and systemat-
ically developing control system by using dynamics-
based and frequency-dependent techniques.

This study involves modifying the Duffing equa-
tion to model hysteresis dynamics. The Duffing oscil-
lator is a well-known, continuous, second-order non-
linear ordinary differential equation that was proposed
in 1918 [16]. The typical form of the Duffing equation
is expressed by [17–19]
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Fig. 1 Analysis of hysteresis dynamics. a Frequency-domain analysis of a Duffing equation [18] and b time-domain analysis of an MR
damper [10]

ẍ + γ ẋ + αx + βx3 = F (1)

where x denotes the displacement, and ẋ and ẍ are the
first and second derivatives of x with respect to time. On
the right-hand side of Eq. (1), F is the external driving
force, and it can be expressed as a harmonic excitation
as follows

F = A sin ωt (2)

where A is the magnitude of F , and ω is the excitation
frequency. Thus, linear damping and spring forces are
controlled by γ and α, respectively. Unlike a simple
harmonic oscillator, β in Eq. (1) is an additional coeffi-
cient associated with the nonlinear restoring force term
x3, which considerably influences the system’s behav-
ior. When β > 0, the system is considered a hardening
spring, and when β < 0, the system is considered a
softening spring.

Duffing equation has been used to discuss the behav-
ior of chaotic dynamics, hardening springs, structural
systems under magnetic excitation [20], and micro-
electromechanical systems [21]. Most studies have
focused on frequency-dependent techniques, such as
that shown in Fig. 1a [18], which shows the typical
resonance responses associated with hysteresis effects
in the frequency domain. Nevertheless, for the model-
ing and control applications of many mechanical and
material devices, hysteresis identification is conducted
in the time domain. For example, Fig. 1b [10] shows

the hysteresis response of an MR damper, where the
horizontal and vertical axes indicate the velocity and
force data, respectively. Therefore, the comparison of
Fig. 1a and b motivated the use of the Duffing equa-
tion for hysteresis modeling and analysis in the time
domain. Section 2 presents a modification of the Duff-
ing equation. Identification results and parameter fit-
ting of a realistic 3-kN MR damper are discussed in
Sect. 3 to validate the proposed techniques. Finally, the
conclusion is stated in Sect. 4.

2 Duffing-like equation for modeling hysteresis
dynamics

Based on the Duffing equation for time-domain analy-
sis, a deterministic governing equation for hysteresis
dynamics is proposed as follows

ẍ + γ ẋ + αx + βxn + δ ẋn = k1d + c1ḋ (3)

where n is the power and should be an odd number.
Equation (3) differs from a typical Duffing equation in
that a nonlinear element, ẋn , is added because hystere-
sis dynamics are rate dependent. For complex cases, n
can be different with respect to x and ẋ for parameter
refinement. Furthermore, the driving force in Eq. (3)
is modeled via a dynamics-equivalent spring-damping
component, with the parameters k1 and c1; thus, d and
ḋ correspond to the input displacement and velocity,
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Fig. 2 Simulink model of
the Duffing-like equation

respectively. The hysteresis system of Eq. (3) is trans-
formed into an exact input–output dynamic system in
state-space form, given by[

ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=
[

0 1
−α −γ

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+
[

0
−βxn

1 − δxn
2

]
︸ ︷︷ ︸

f(x)

+
[

0 0
k1 c1

]
︸ ︷︷ ︸

B

[
d
ḋ

]
︸︷︷︸

d

(4)

y = [
0 A f

]
︸ ︷︷ ︸

C

[
x1

x2

]
︸ ︷︷ ︸

x

(5)

where x1 = x and x2 = ẋ are state variables and x
is a state vector containing x1 and x2. Accordingly, B
and d correspond to the input matrix and signal of the
hysteresis system, respectively, and C and y denote the
hysteresis output matrix and signal, respectively. The
plant and nonlinear dynamics are characterized by A
and f(x), respectively. According to a subtle observa-
tion, the hysteresis output is extracted and linked to the
velocity state x2 through multiplication with a constant
A f ; here, A f is defined as the maximum amplitude of
y. This relation is difficult to detect through the typical
analysis of the Duffing equation based on frequency-
dependent methods.

According to the expressions in Eqs. (3)–(5), the
Simulink model shown in Fig. 2 was used for simu-
lation studies, and the ḋ − y and d − y graphs are
shown in Fig. 3a and b, respectively. For this compari-
son, parameters k1 = c1 = γ = α = 10, β = δ =

200, n = 3, and A f = 2 were selected for the bench-
mark model. To investigate the influence of parame-
ters on the hysteresis curve, each parameter value was
increased individually and separately, and the remain-
ing parameters were unchanged. Here, k1 and c1 were
raised to 25, and γ and α were promoted to 50; in addi-
tion, β and δ were doubled, and n = 5 and A f = 4
were assigned. The first column of Fig. 3a indicates
that the stiffness-related parameters, k1, α, and β, con-
trol the width of the hysteresis area. Here, k1 had a
major influence on changing the loop area, whereas a
greater α slightly reduced the pre-yield width. In the
third column of Fig. 3a, the damping-related parame-
ters, c1, γ , and δ, modulated the y-axis magnitude. In
particular, an increase in c1 amplified the y-axis value,
whereas the doubling of δ reduced the y-axis magni-
tude. In the second column, a sharp turning between
the post- and pre-yield sections was adjustable accord-
ing to n, and A f expanded the y-axis magnitude. On
the basis of the observation in Fig. 3, the tuning pro-
cedure is described as follows. First, A f is determined
on the basis of the maximum amplitude of y obtained
from the measured data, and an odd n is assigned with
respect to the turning angle between post- and pre-yield
areas. Second, c1 and k1, which control the hysteresis
shape, are estimated. Third, γ and δ, which are asso-
ciated with the rate-dependent dynamics, are chosen.
Finally, α and β are considered in a later stage for model
refinement. Figure 4a summarizes the tuning procedure
for the Duffing-like equation. More detailed study of
parameter identification is currently underway.
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1042 J.-Y. Tu et al.

Fig. 3 Responses of the
Duffing-like equation,
where the parameters for the
benchmark model are
k1 = c1 = γ = α =
10, β = δ = 200, n = 3,
and A f = 2. The other plots
surrounding the benchmark
model show that the
responses varied with
parameters. a ḋ − y
diagrams and b d − y
diagrams
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Fig. 4 Parameter tuning procedure for the Duffing-like equation.
a The typical Duffing-like equation. b The modified Duffing-like
equation for MR damper

The Duffing-like equation provides a more system-
atic and deterministic foundation for stability analy-
sis than has previously been possible. Here, the widely
accepted, direct Lyapunov method is introduced to ana-
lyze the hysteresis stability, assuming that γ, δ, α, and
β are positive. According to Eq. (4), a typical state-
based Lyapunov function for the Duffing-like equation
and its first time derivative are given as follows

V = α

2
x2 + 1

2
ẋ2 + β

n + 1
xn+1 (6)

V̇ = ẋ ẍ + αx ẋ + βxn ẋ

= ẋ
(−αx − γ ẋ − βxn − δ ẋn) + αx ẋ + βxn ẋ

= −γ ẋ2 − δ ẋn+1 (7)

Equation (6) is a globally unbounded, positive-definite
function, and Eq. (7) shows a negative semi-definite
function. In addition, the present study defined a dif-
ferent Lyapunov function on the basis of kinetic and
potential energies; this globally unbounded function is
written as

V = 1

2
ẋ2 +

∫ x

0

(
αx + βxn)

dr

= 1

2
ẋ2 + 1

2
αx2 + β

n + 1
xn+1 (8)

Thus, the first derivative of Eq. (8) with respect to time
yields

V̇ = ẋ ẍ + αx ẋ + βxn ẋ

= ẋ
(−αx − γ ẋ − βxn − δ ẋn) + αx ẋ + βxn ẋ

= −γ ẋ2 − δ ẋn+1 (9)

Equations (6)–(9) show identical V and V̇ , and both
Eqs. (7) and (9) are negative semi-definite. Thus, the
hysteresis system is guaranteed to be asymptotically
stable except for the set that V̇ is zero. To investigate the
stability related to V̇ = 0 and to prove the asymptotical
stability of the entire hysteresis system, the invariant set

principle [22] was used. First, the invariant set, denoted
as R, includes all the solutions that V̇ is zero; thus,
according to Eqs. (7) and (9), the invariant set is defined
as ẋ = 0, excluding the imaginary solutions. Second,
assuming that ẋ is zero, Eq. (3) is reduced to

ẍ = −αx − βxn (10)

In phase plane, the points where ẋ and ẍ are zero consti-
tute the domain of attraction. Therefore, Eq. (10) shows
that the origin where V̇ = 0 and x = ẋ = ẍ = 0 is the
only attractive point and the largest invariant set in R.
As a result, the hysteresis dynamics are proven to be
globally asymptotical stable with continuous energy
dissipation, for all positive γ, δ, α, and β.

3 Identification studies of a 3-kN MR damper

To validate and exemplify the proposed techniques in
a straightforward and practical manner, a 3-kN MR
damper [23] was modeled and its parameters were iden-
tified. Controllable MR fluids composed of magnetiz-
able particles and carrying oil (mainly iron particles
and silicon oil) are widely used in developing damp-
ing devices for vibration reduction. Typically, the MR
damper cylinder is filled with an MR fluid, and the pis-
ton is wrapped with coils. A voltage–current converter
is connected to the coil to generate magnetic fields
that align the suspended iron particles. Thus, the effec-
tive stiffness of the MR fluid is adjustable in millisec-
onds by changing the coil current, and the linear, free-
flowing MR fluid behaves like a semi-solid. Because
the rheological process is reversible and controllable
and requires low power, an MR damper combines the
advantages of intelligent adaption, such as that of active
vibration control, with high reliability, such as that of
passive isolators. However, the rheological properties,
which depend on many complex factors, related to fluid
mechanics, applied electromagnetism, and mechanical
design are difficult to model.

In using the Duffing-like equation to model MR
damper dynamics, first, a passive case was considered,
meaning that the MR fluid was exposed to a constant
magnetic field generated by a fixed voltage signal. With
reference to Eq. (3), a continuous physical model for
an MR damper is proposed in Fig. 5, where the piston
shaft is connected to a protected structure, and the bot-
tom of the MR damper is fixed to the ground. Thus,
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c1
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x,
k2

c2m
c3

d,

ground

piston x
d

k3

Fig. 5 Proposed MR damper model based on the concept of a
Duffing-like equation

the input signals of the piston displacement and veloc-
ity are denoted by d and ḋ, respectively. In addition,
m is assumed to be the total mass of the suspended
particles in the MR fluid, and x and ẋ are consid-
ered the displacement and velocity of the mass, respec-
tively. Parameters k1, k2, k3, c1, c2, and c3 represent
the associated linear/nonlinear stiffness and damping
coefficients. According to Fig. 5 and Eq. (3), the deter-
ministic governing equation for MR damper dynamics
is proposed as follows

mẍ + c2 ẋ + k2x + k3xn + c3 ẋn

= k1 (d − x) + c1
(
ḋ − ẋ

)
(11)

Furthermore, to conduct parameter identification in a
straightforward manner, without considering unit con-
version, Eq. (11) is divided by m and normalized to

ẍ + (c1 + c2)︸ ︷︷ ︸
γ

ẋ + (k1 + k2)︸ ︷︷ ︸
α

x + k3︸︷︷︸
β

xn + c3︸︷︷︸
δ

ẋn

= k1d + c1ḋ︸ ︷︷ ︸
F

(12)

Thus, k1, k2, k3, c1, c2, and c3 in the rest of this paper
are dimensionless constants. The arrangement in Eq.
(12) is similar to the Duffing-like system shown in Eq.
(3), where the external driving force is expressed on
the right-hand side in relation to the applied piston dis-
placement and velocity. In practice, the input velocity
signal ḋ can be obtained through differentiation of the
d signal. Unlike many existing MR damper models, in
Fig. 5 and Eqs. (11) and (12), x is defined as the invis-
ible and immeasurable displacement of the fluid mass,
and d is defined as the piston displacement. In addition,
the definition of m is different from that in reference
[14]; the mass of piston is not considered in the hystere-
sis dynamics. In this scenario, the MR damper is con-
sidered a second-order dynamic equation with kinetic
energy attributable to m, rather than a first-order energy
dissipation device.

Equations (11) and (12) describe the MR damper
equation of motion, and Eq. (12) is transformed into
the following state-space equation

[
ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=
[

0 1
−k1 − k2 −c1 − c2

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+
[

0
−c3xn

2 − k3xn
1

]
︸ ︷︷ ︸

f(x)

+
[

0 0
k1 c1

]
︸ ︷︷ ︸

B

[
d
ḋ

]
︸︷︷︸

d

(13)

y = Fmr = [
0 A f

]
︸ ︷︷ ︸

C

[
x1

x2

]
︸ ︷︷ ︸

x

(14)

Accordingly, B and d correspond to the input matrix
and input vector of the damper, respectively, and the
damper force, Fmr, is the hysteresis output, which is
measurable from the piston load cell. Again, Fmr is
linked to x2 by multiplying A f , and A f is equal to the
maximum amplitude of Fmr.

According to the expressions in Eq. (12)–(14),
velocity–force diagrams with a series of different para-
meters are shown in Fig. 6 to illustrate the fitting strate-
gies. The given parameters are summarized in Table 1,
and the simulation work was conducted in the Simulink
environment, where the sinusoidal excitation had a fre-
quency of 0.25 Hz and a unitary amplitude. The prin-
cipal pattern of the hysteresis curve with respect to the
path direction, area, shape, slope, and force magnitude
can be observed in Fig. 6. First, the shape, slope, path,
and area of the hysteresis loops are discussed. Fig-
ure 6 shows that c1 and c2 control the shape and area
of the post- and pre-yield sections. As c2 increased,
Fmr behaved more linearly, and the post- and pre-
yield sections became obscure. In addition, as c1 and n
increased, the slope of the curve for the pre-yield sec-
tion became steep, and an increase in c3 reduced the
slop of the curve for the post-yield section. Regarding
effective stiffness, variations in k1, k2, and k3 caused the
hysteresis loops to be clockwise or counterclockwise.
In addition, these variations controlled the angle and
area between the back-and-forth paths. Furthermore,
the Fmr amplitude could be adjusted by increasing or
reducing c1, c2, c3, and n, whereas changes in k1, k2,
and k3 had no notable influence on the Fmr amplitude.
As a rule of thumb, a preliminary tuning method is
suggested as follows. First, n and A f are determined
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Fig. 6 Fitting pattern with
a series of parameters given
in Table 1. The sinusoidal
excitation had a frequency
of 0.25 Hz and a unitary
amplitude. The vertical and
horizontal axes denote the
force and velocity signals,
respectively
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in a relatively straightforward manner according to the
slope of the curve for the post-yield section and the
Fmr peak. Second, c1, c2, and c3 with respect to the
hysteresis loop slope and area are defined in an iter-
ative trial-and-error procedure. Third, k1, k2, and k3

are used to refine the horizontal width changes without
affecting the maximum amplitude of Fmr. The tuning

procedure is summarized in Fig. 4b and is consistent
with that shown in Fig. 4a.

Identification results for a 3-kN MR damper stud-
ied at the National Center for Research on Earthquake
Engineering, Taiwan, are presented. The MR damper
was subjected to a series of voltage signals from 0 to
0.8 V under 2 Hz sinusoidal excitations; the data sam-
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Table 1 Applied parameters for Fig. 6 with A f = 2

c1 c2 c3 k1 k2 k3 n

(a) −20, −10, 20, 30 10 100 3 5 5 3

(b) 20 −30, −10, 10, 30 100 3 5 5 3

(c) 20 10 100, 1000 3 5 5 3

(d) 20 10 100 −5, −3, 3, 5 5 5 3

(e) 20 10 100 3 −5, −1, 5, 15 5 3

(f) 20 10 100 3 5 −40, −5, 5, 60 3

(g) 20 10 100 3 5 5 1, 3, 5

Fig. 7 Identification results
for a 3-kN MR damper
under 2 Hz sinusoidal
excitations. The fitted
parameters are summarized
in Table 2. The left-hand
column shows
displacement–force plots,
and the right-hand column
shows velocity–force plots.
The gray dotted lines are the
experimental results, and
the black solid lines are the
simulation results
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Table 2 Parameter identification results of a 3-kN MR damper
under 2 Hz sinusoidal excitations

Voltage (V) c1 c2 c3 k1 k2 k3 n A f

0 10 100 350 50 800 0 5 0.25

0.2 10 10 330 40 650 0 5 1

0.3 10 10 320 36 520 0 5 1.4

0.4 10 10 320 34 480 0 5 1.6

0.5 10 10 280 33 470 0 5 1.7

0.6 10 10 280 32 450 0 5 1.8

0.8 10 10 250 30 400 0 5 2

pling time was 0.005 s, and the experiment was based
on the dSPACE real-time hardware. In Fig. 7, the mea-
sured Fmr, d, and ḋ data are drawn using gray dotted
lines, and the simulated responses based on Eq. (12)
are plotted using black solid lines. For brevity, only
the cases of 0, 0.4, 0.6, and 0.8 V are shown, and the
identified parameters for all cases are summarized in
Table 2. As shown in Fig. 7, the measured and simu-
lated input–output curves generally show a high level
of agreement. However, the right-hand column of Fig.
7 exhibits an obvious mismatch, while the Fmr and ḋ
signals approached zero. The modeling errors resulted
from deadzone dynamics due to joint backlash, because
repeated testing of the MR damper caused mechanical
wear. A deadzone occurred when the actuator piston
moved, but the damper force was not generated. When
the deadzone dynamics were artificially removed, as
shown in Fig. 8, the hysteresis loop pattern became
similar to that shown in Fig. 1b. However, this identifi-

cation still preserved the deadzone dynamics to keep
the results realistic. In future studies, the unwanted
deadzone can be reduced by improving the experimen-
tal setup. Furthermore, to evaluate the robustness of
the predicted models, the experimental data with 1 Hz
sinusoidal and random excitations were compared for
the cases of 0, 0.4, 0.6, and 0.8 V cases in Fig. 9, and
the coefficients were fixed according to Eq. (12) and
Table 2. Although noticeable fitting errors occurred,
the models still captured a reasonable pattern and route
for the hysteresis curves.

4 Conclusion

This paper proposes a new Duffing-like equation
for modeling hysteresis dynamics. This Duffing-like
model uses a second-order, continuous nonlinear ordi-
nary differential equation to predict the hysteresis
curve. When the input excitation and hysteresis output,
i.e., d and y, are defined, the dynamics-based Duffing-
like equation can model and analyze the input–output
behavior in a systematic and traceable manner. The
proposed model can facilitate numerical computation,
stability analysis, and control design processes for the
semi-active control of the MR dampers. In addition,
the study can be extended and used to identify other
mechanical, material, and structural systems that have
hysteresis dynamics. In future research, attention will
be given to more in-depth studies of (a) a systematic
and optimal approach for parameterizing and refining
the coefficients of the model; (b) a unified, frequency-
dependent model for circumventing time-varying input

Fig. 8 Velocity–force
testing results for the 0.4V
case: a the deadzone
dynamics in the dotted-line
box were measured; b
because the deadzone was
removed, the curves show
proper hysteresis dynamics
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Fig. 9 Using the identified
MR damper models in Table
2 to fit the experimental data
under 1 Hz sinusoidal and
random excitations. Only
the velocity–force plots are
shown. The gray lines
represent the experimental
results, and the black lines
represent the simulation
results
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excitations; and (c) a semi-active control design for MR
damper force.
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