Duffing-stuffing parameter estimation

Goals:

- Estimate parameters for a Duffing-like model such that it describes the behavior of the system with low error in different experimental schemes (varying resonnance frequencies, degradation, etc.).
- Simulate the system and perform various analyses (sensitivity, stability, etc.)

Table of contents

- 1. Empirical data
- 2. Model
- 3. Rewritten model
- 4. Loss function

Empirical data

Data is measured through frequency scans at lab.

Read data from .mat -files as a dict of numpy arrays. We focus primarily on the XY-trace data, containing a stable-state period of 100 observations per frequency, for 5 experiments total with variying resonnance frequencies.

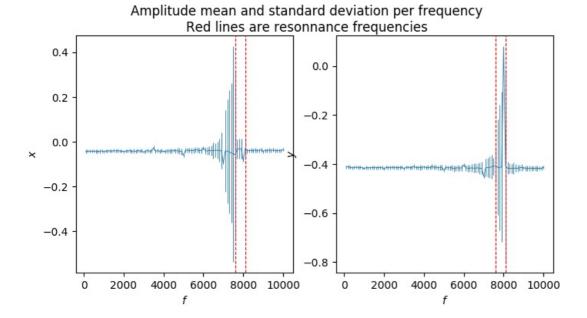
```
Reading first experiment Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp', 'YResfFreq') Resonnance frequencies: (7600, 8100) Resonnance amplitudes: (1.03, 1.10) T = 55.78 t in [0.00, 55.78] f in [0.0, 10000.0] x shape: 101 \times 100 y shape: 101 \times 100
```

Plotting

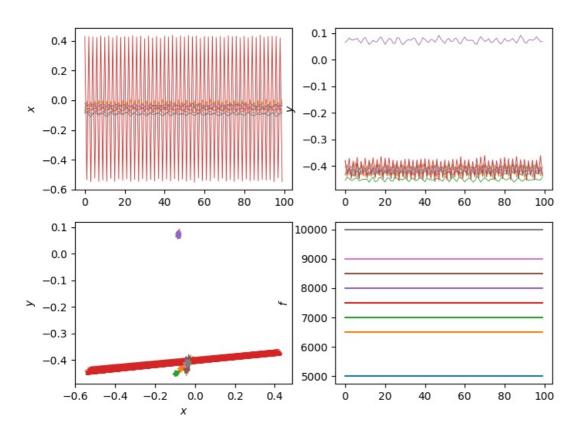
Three types of plots:

- Frequency scan with amplitude mean/std.
- Trajectory plot in (x, y)-plane.
- Trajectory over time for x and y.

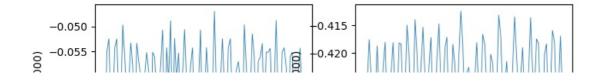
```
Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp', 'YResfFreq') Resonnance frequencies: (7600, 8100) Resonnance amplitudes: (1.03, 1.10) T = 55.78 t in [0.00, 55.78] f in [0.0, 10000.0] x shape: 101 \times 100 y shape: 101 \times 100
```

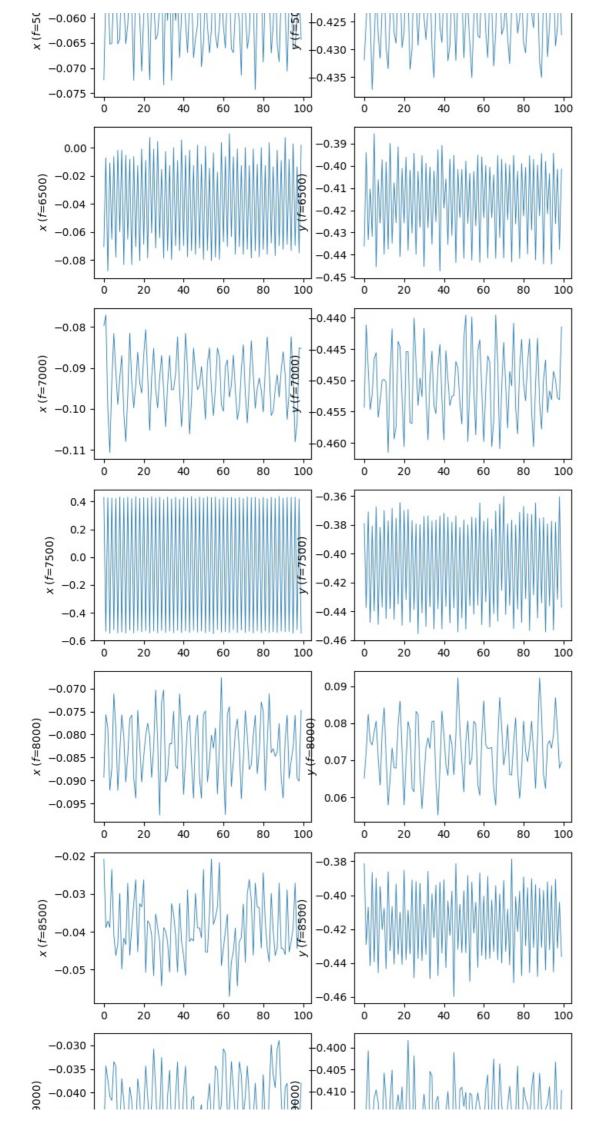


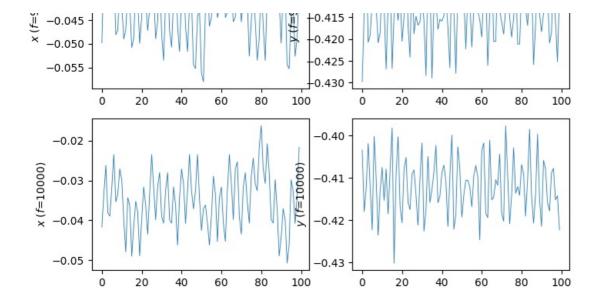
XY-data plots for given frequencies



Stable-state XY-data plots for given frequencies







Model

Model derived from Duffing equations:

$$egin{aligned} \dot{m_1} \ddot{\ddot{y}_1} &= F_1 - \dot{y}_1(c_1 + c_3) + \dot{y}_2c_3 - y_1(k_1 + k_3) + y_2k_3 - lpha_1 y_1^3 + lpha_3(y_2 - y_1)^3 \ m_2 \ddot{\ddot{y}}_2 &= F_2 - \dot{y}_2(c_2 + c_3) + \dot{y}_1c_3 - x_2(k_2 + k_3) + y_1k_3 - lpha_2 y_2^3 + lpha_3(y_2 - y_1)^3 \end{aligned}$$

where $F=Ce^{i\omega t}$. Transform to first-order form by variable substitutions $x_3=\dot{y}_1, x_1=y_1$ and $x_4=\dot{y}_2, x_2=y_2$:

$$egin{align*} \dot{x}_1 &= x_3 \ \dot{x}_2 &= x_4 \ m_1 \dot{x}_3 &= F_1 - x_3 (c_1 + c_3) + x_4 c_3 - x_1 (k_1 + k_3) + x_2 k_3 - lpha_1 x_1^3 + lpha_3 (x_2 - x_1)^3 \ m_2 \dot{x}_4 &= F_2 - x_4 (c_2 + c_3) + x_3 c_3 - x_2 (k_2 + k_3) + x_1 k_3 - lpha_2 x_2^3 + lpha_3 (x_2 - x_1)^3 \ \end{pmatrix}$$

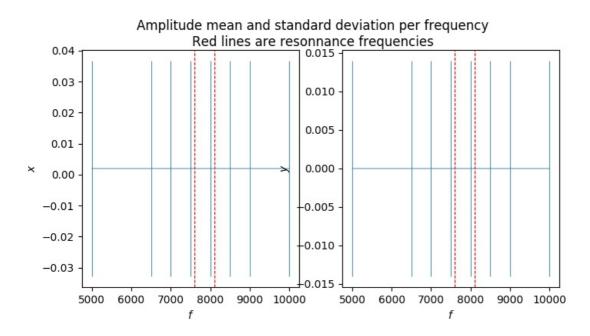
For some reason, this model doesn't work out when working backwards from resonance frequencies. I may be missing something obvious, otherwise the fact that mass goes into the estimations may mess things up. See plots of simulation below.

Notes on solvers

- We use SciPy's solve_ivp to simulate the system. Different methods (RK45, LSODA, Radeau) has been tested with no noticable differences.
- The standard odeint from SciPy is super shit. It easily diverges and is unstable. They claim to use the standard LSODA solver (same as solve ivp with method='LSODA') but the results are entirely different.
- Once we hit the right parameters, the simulation is considerable slower because these are adaptive solvers.
- There is an ODE implementation from the PyDSTool package (https://github.com/robclewley/pydstool) which compiles to C and is much much faster.

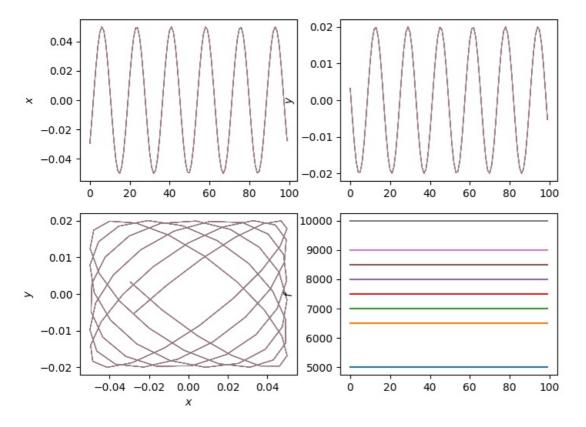
TODO: Solve ODE with PyDSTool solver. Simulations takes 10-30 seconds per frequency, which results in way too long test cycles. With PyDSTool we can expect a magnitudal speedup.

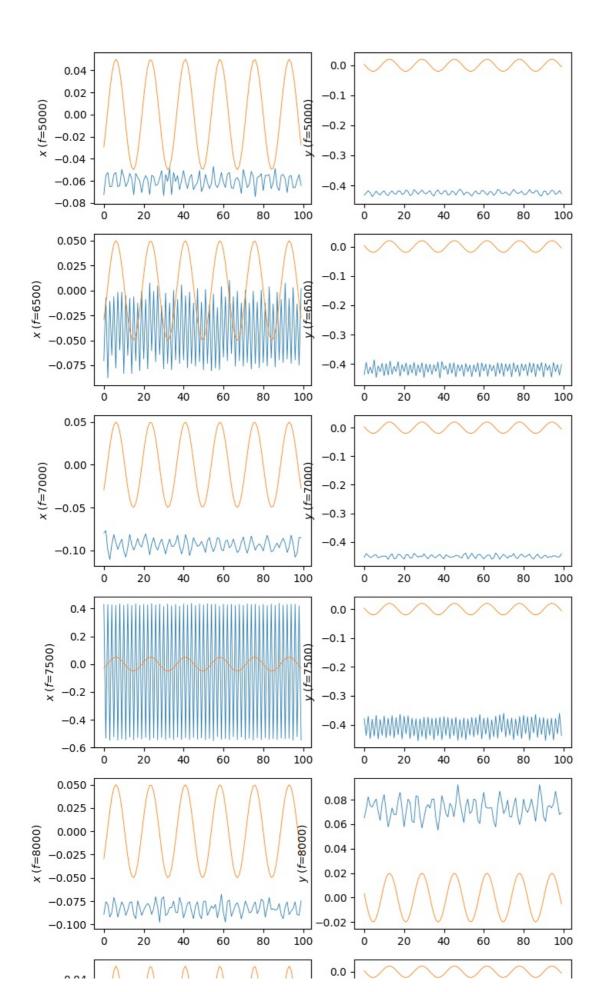
```
Omega0 1 = 47763.0
Omega0 2 = 50905.3
k1 = 3421950.0
k2 = 3887017.6
c1 = 2.1
c2 = 2.3
Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp', 'YResfFreq')
Resonnance frequencies: (7600, 8100)
Resonnance amplitudes: (1.03, 1.10)
T = 55.78
t in [0.00, 55.78]
f in [0.0, 10000.0]
x shape: 101 x 100
```

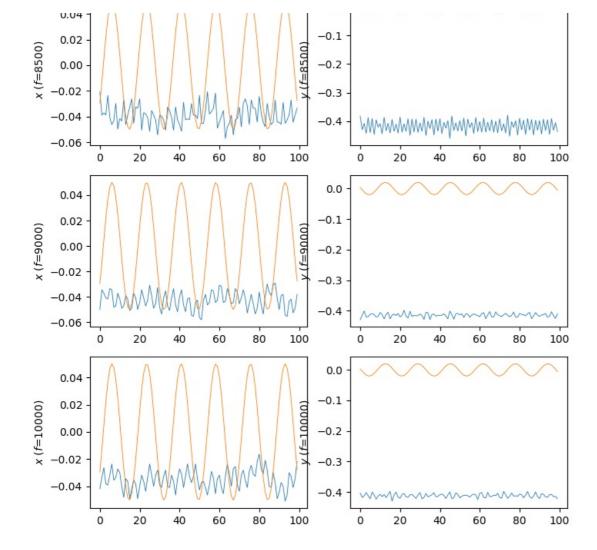


y shape: 101 x 100

XY-data plots for given frequencies







Rewritten model

Eliminate mass, + easier to reason about physical constants:

$$egin{align*} \dot{x}_1 &= x_3 \ \dot{x}_2 &= x_4 \ \dot{x}_3 &= rac{1}{m_1} F_1 - x_3 (c_1 + c_3) + x_4 c_3 - x_1 (k_1 + k_3) + x_2 k_3 - lpha_1 x_1^3 + lpha_3 (x_2 - x_1)^3 \ \dot{x}_4 &= rac{1}{m_2} F_2 - x_4 (c_2 + c_3) + x_3 c_3 - x_2 (k_2 + k_3) + x_1 k_3 - lpha_2 x_2^3 + lpha_3 (x_2 - x_1)^3 \ \end{pmatrix}$$

With harmonic oscillator identities

• Undamped angular frequency:

$$\omega_0 = \sqrt{rac{k}{m}}$$

• Damping ratio:

$$\zeta = rac{c}{2\sqrt{mk}}$$

• Resonant frequency:

$$\omega_r = \omega_0 \sqrt{1-2\zeta^2}, \zeta < rac{1}{\sqrt{2}}$$

express the constants subject to estimation as

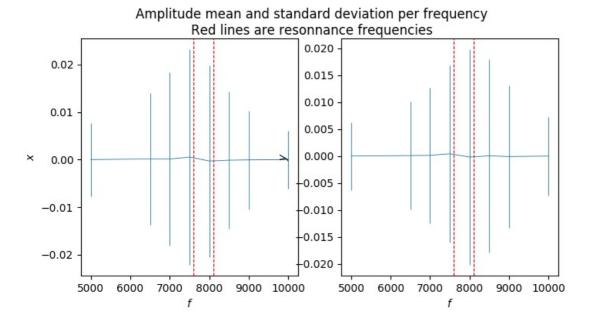
$$egin{aligned} c_1 &= 2\zeta_1\omega_{0,1} \ c_2 &= 2\zeta_2\omega_{0,2} \ c_3 &= g_c(c_1,c_2) \ k_1 &= \omega_{0,1}^2 \ k_2 &= \omega_{0,2}^2 \ k_3 &= g_k(k_1,k_2) \ lpha_1 &= f_1(\mathbf{X}; heta) \ lpha_2 &= f_2(\mathbf{X}; heta) \ lpha_3 &= g_c(lpha_1,lpha_2) \end{aligned}$$

With the model expressed this way, things make sense and we get resonnance where it should be.

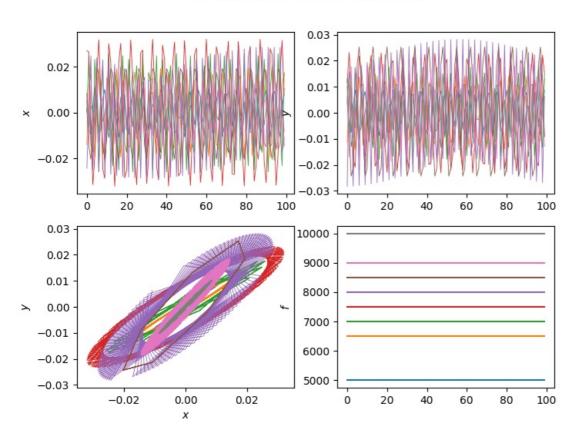
Harmonic oscillator

Set $c_3=k_3=\alpha_1=\alpha_2=\alpha_3=0$ for simulating a standard driven harmonic oscillator with no coupling between x- and y-components. Assume damping $\zeta_1=\zeta_2=0.1$ and use resonnance frequencies from lab data to estimate parameters.

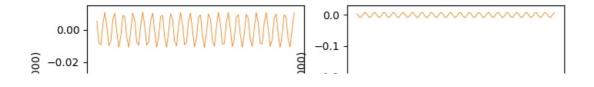
```
Read data, experiment 0
Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp',
'YResfFreq')
Resonnance frequencies: (7600, 8100)
Resonnance amplitudes: (1.03, 1.10)
T = 55.78
t in [0.00, 55.78]
f in [0.0, 10000.0]
x shape: 101 x 100
y shape: 101 x 100
Parameters:
0mega_r 1 = 47752.2
0mega_r^2 = 50893.8
0mega0 1 = 48237.0
0mega0 2 = 51410.5
c1 = 9647.4
c2 = 10282.1
c3 = 0.0
k1 = 2326809592.7
k2 = 2643039774.5
k3 = 0.0
a1 = 0.0
a2 = 0.0
a3 = 0.0
```

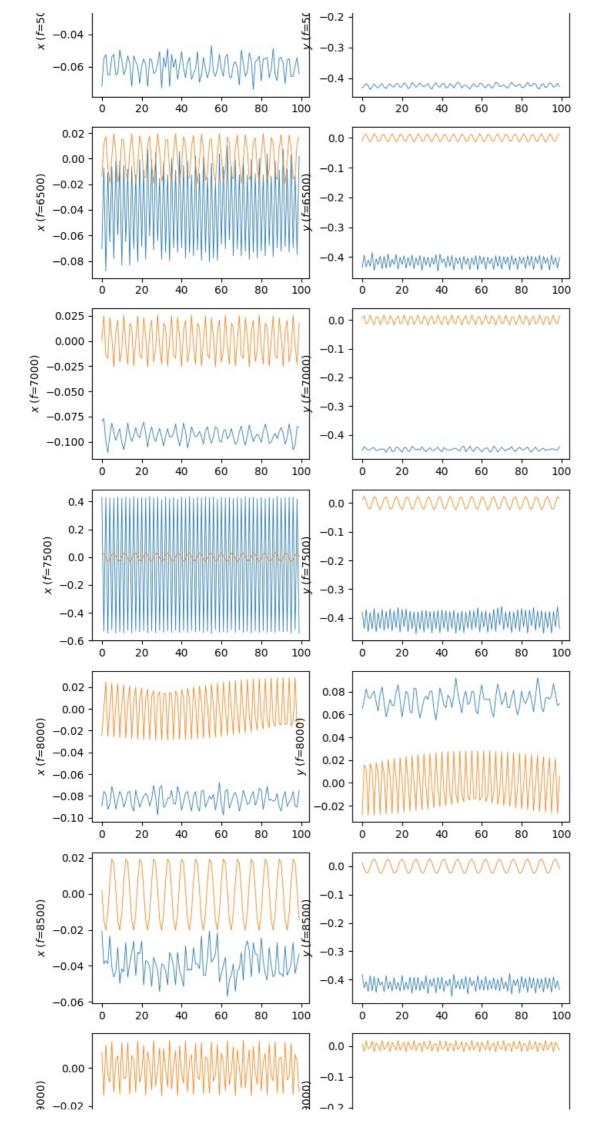


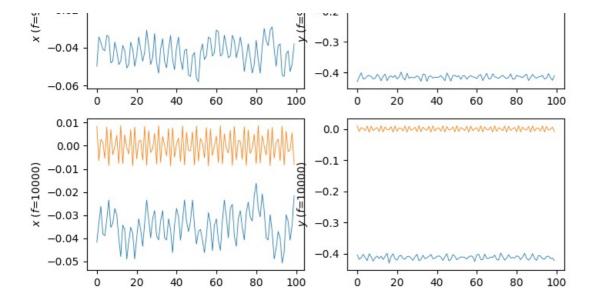
XY-data plots for given frequencies



Stable-state XY-data plots for given frequencies





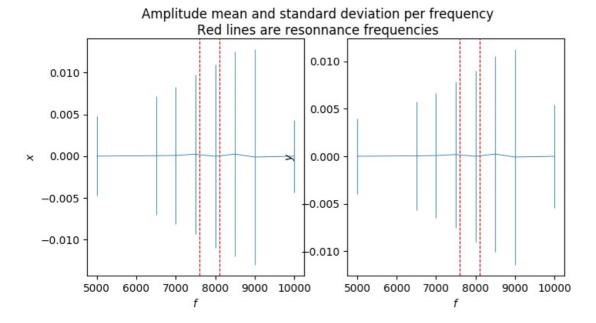


With duffing term

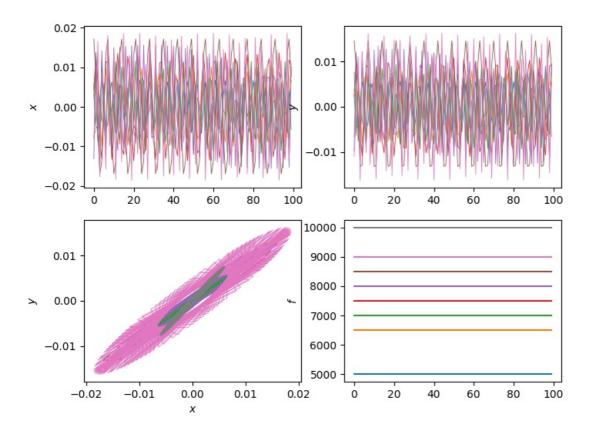
a3 = 0.0

The duffing term has to be pretty large to see any stiffening effect. Set $\alpha_1=1500k_1$ and $\alpha_2=1500k_2$ (still without coupling).

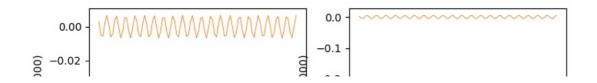
```
Read data, experiment \boldsymbol{\theta}
Variables (rows x observations):
                                       ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp',
'YResfFreq')
Resonnance frequencies: (7600, 8100)
Resonnance amplitudes: (1.03, 1.10)
T = 55.78
t in [0.00, 55.78]
f in [0.0, 10000.0]
x shape: 101 x 100
y shape: 101 x 100
Parameters:
0 \text{mega r } 1 = 47752.2
0mega_r 2 = 50893.8
0mega0\ 1 = 48237.0
0mega0 2 = 51410.5
c1 = 9647.4
c2 = 10282.1
c3 = 0.0
k1 = 2326809592.7
k2 = 2643039774.5
k3 = 0.0
a1 = 3490214389022.0
a2 = 3964559661768.2
```

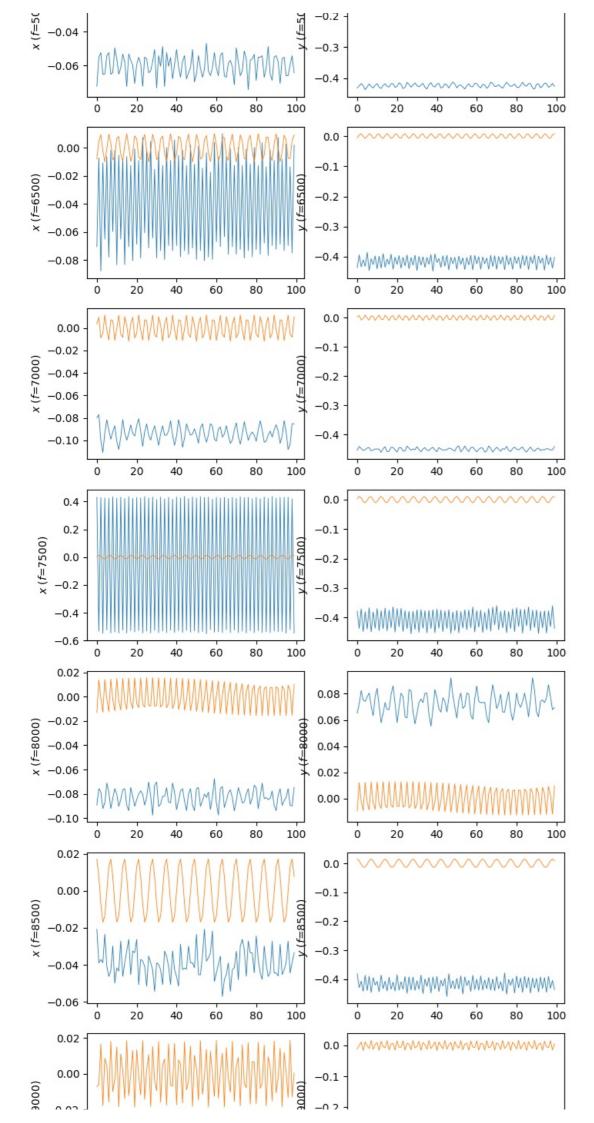


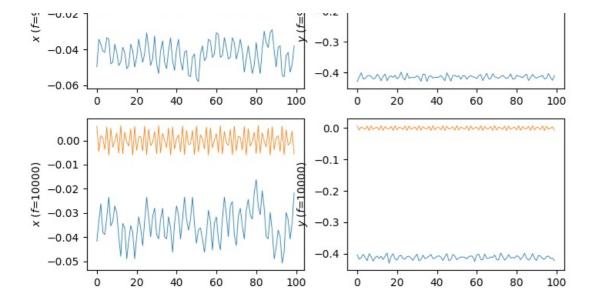
XY-data plots for given frequencies



Stable-state XY-data plots for given frequencies







Loss function

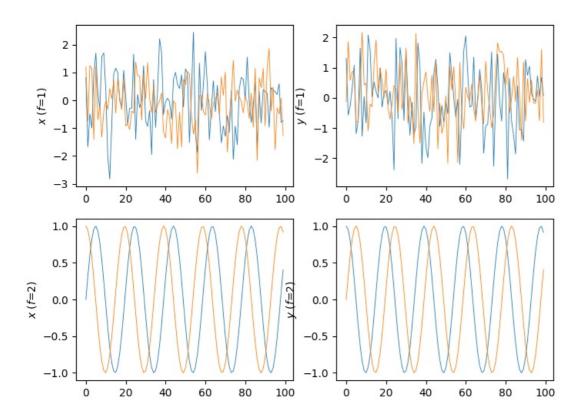
Given the two multivariate signals, one empirical and one simulated, we need a distance metric $d(\mathbf{S}(\omega), \hat{\mathbf{S}}(\omega))$ that quantifies the error of our simulation.

Consider first a single frequency $\mathbf{S}(\omega=x)\in\mathbb{R}^2$. Treat each component individually, perform autocorrelation do find the shift, then simply use mean squared error as the distance metric between the two common periods of \mathbf{S} and $\hat{\mathbf{S}}$. We extend this to the multivariate case by simply averaging the loss for each frequency.

TODO: Assert that both components of $\mathbf{S}(\omega=x)$ have the same shift.

Loss function test

Random signals and sines.



X idx: 32.0000 mean, 0.0000 std Y idx: 1.0000 mean, 0.0000 std X coeffs: 0.1348 mean, 0.0000 std Y coeffs: 0.1414 mean, 0.0000 std X MSEs: 1.4426 mean, 0.0000 std Y MSEs: 1.7080 mean, 0.0000 std Loss: 3.1506

X idx: 5.0000 mean, 0.0000 std
Y idx: 15.0000 mean, 0.0000 std
X coeffs: 0.9416 mean, 0.0000 std
Y coeffs: 0.8535 mean, 0.0000 std
X MSEs: 0.0022 mean, 0.0000 std
Y MSEs: 0.0127 mean, 0.0000 std
Loss: 0.0149

X idx: 18.5000 mean, 13.5000 std Y idx: 8.0000 mean, 7.0000 std X coeffs: 0.5382 mean, 0.4034 std Y coeffs: 0.4975 mean, 0.3560 std X MSEs: 0.7224 mean, 0.7202 std Y MSEs: 0.8603 mean, 0.8476 std

Loss: 1.5827

Loss for model

Plotting normalized signals.

X idx: 25.0000 mean, 17.5357 std Y idx: 15.2500 mean, 9.2432 std X coeffs: 0.0720 mean, 0.0817 std Y coeffs: 0.0795 mean, 0.0590 std X MSEs: 1.8373 mean, 0.1778 std Y MSEs: 1.8084 mean, 0.1515 std

Loss: 3.6457

