
Duffing-stuffing	parameter	estimation
Goals:

Estimate	parameters	for	a	Duffing-like	model	such	that	it	describes	the	behavior	of	the	system	with	low	error	in	different
experimental	schemes	(varying	resonnance	frequencies,	degradation,	etc.).
Simulate	the	system	and	perform	various	analyses	(sensitivity,	stability,	etc.)

Table	of	contents
1.	 Empirical	data
2.	 Model
3.	 Rewritten	model
4.	 Loss	function

Empirical	data
Data	is	measured	through	frequency	scans	at	lab.

Read	data	from	 .mat -files	as	a	dict	of	numpy	arrays.	We	focus	primarily	on	the	XY-trace	data,	containing	a	stable-state	period	of	100
observations	per	frequency,	for	5	experiments	total	with	variying	resonnance	frequencies.

Plotting

Three	types	of	plots:

Frequency	scan	with	amplitude	mean/std.
Trajectory	plot	in	(x,	y)-plane.
Trajectory	over	time	for	x	and	y.

Reading	first	experiment
Variables	(rows	x	observations):		('x',	'y',	's',	'f',	'v',	't',	'XResAmp',	'XResfFreq',	'YResAmp',	
'YResfFreq')
Resonnance	frequencies:	(7600,	8100)
Resonnance	amplitudes:	(1.03,	1.10)
T	=	55.78
t	in	[0.00,	55.78]
f	in	[0.0,	10000.0]
x	shape:	101	x	100
y	shape:	101	x	100

Variables	(rows	x	observations):		('x',	'y',	's',	'f',	'v',	't',	'XResAmp',	'XResfFreq',	'YResAmp',	
'YResfFreq')
Resonnance	frequencies:	(7600,	8100)
Resonnance	amplitudes:	(1.03,	1.10)
T	=	55.78
t	in	[0.00,	55.78]
f	in	[0.0,	10000.0]
x	shape:	101	x	100
y	shape:	101	x	100

file:///home/michael/duffing-stuffing/duffing-estimation-clean.html#empiric-data
file:///home/michael/duffing-stuffing/duffing-estimation-clean.html#model
file:///home/michael/duffing-stuffing/duffing-estimation-clean.html#rewritten-model
file:///home/michael/duffing-stuffing/duffing-estimation-clean.html#loss-function






Model
Model	derived	from	Duffing	equations:

where	 .	Transform	to	first-order	form	by	variable	substitutions	 	and	 :

For	some	reason,	this	model	doesn't	work	out	when	working	backwards	from	resonnance	frequencies.	I	may	be	missing	something
obvious,	otherwise	the	fact	that	mass	goes	into	the	estimations	may	mess	things	up.	See	plots	of	simulation	below.

Notes	on	solvers

We	use	SciPy's	 solve_ivp 	to	simulate	the	system.	Different	methods	(RK45,	LSODA,	Radeau)	has	been	tested	with	no	noticable
differences.
The	standard	 odeint 	from	SciPy	is	super	shit.	It	easily	diverges	and	is	unstable.	They	claim	to	use	the	standard	LSODA	solver
(same	as	 solve_ivp 	with	method='LSODA')	but	the	results	are	entirely	different.
Once	we	hit	the	right	parameters,	the	simulation	is	considerable	slower	because	these	are	adaptive	solvers.
There	is	an	ODE	implementation	from	the	PyDSTool	package	(https://github.com/robclewley/pydstool)	which	compiles	to	C	and	is
much	much	faster.

TODO:	Solve	ODE	with	PyDSTool	solver.	Simulations	takes	10-30	seconds	per	frequency,	which	results	in	way	too	long	test	cycles.	With
PyDSTool	we	can	expect	a	magnitudal	speedup.

https://github.com/robclewley/pydstool


Omega0	1	=	47763.0
Omega0	2	=	50905.3
k1	=	3421950.0
k2	=	3887017.6
c1	=	2.1
c2	=	2.3
Variables	(rows	x	observations):		('x',	'y',	's',	'f',	'v',	't',	'XResAmp',	'XResfFreq',	'YResAmp',	
'YResfFreq')
Resonnance	frequencies:	(7600,	8100)
Resonnance	amplitudes:	(1.03,	1.10)
T	=	55.78
t	in	[0.00,	55.78]
f	in	[0.0,	10000.0]
x	shape:	101	x	100
y	shape:	101	x	100







Rewritten	model
Eliminate	mass,	+	easier	to	reason	about	physical	constants:

With	harmonic	oscillator	identities

Undamped	angular	frequency:

Damping	ratio:

Resonant	freqency:

express	the	constants	subject	to	estimation	as

With	the	model	expressed	this	way,	things	make	sense	and	we	get	resonnance	where	it	should	be.

Harmonic	oscillator

Set	 	for	simulating	a	standard	driven	harmonic	oscillator	with	no	coupling	between	x-	and	y-
components.	Assume	damping	 	and	use	resonnance	frequencies	from	lab	data	to	estimate	parameters.

Read	data,	experiment	0
Variables	(rows	x	observations):		('x',	'y',	's',	'f',	'v',	't',	'XResAmp',	'XResfFreq',	'YResAmp',	
'YResfFreq')
Resonnance	frequencies:	(7600,	8100)
Resonnance	amplitudes:	(1.03,	1.10)
T	=	55.78
t	in	[0.00,	55.78]
f	in	[0.0,	10000.0]
x	shape:	101	x	100
y	shape:	101	x	100
Parameters:
Omega_r	1	=	47752.2
Omega_r	2	=	50893.8
Omega0	1	=	48237.0
Omega0	2	=	51410.5
c1	=	9647.4
c2	=	10282.1
c3	=	0.0
k1	=	2326809592.7
k2	=	2643039774.5
k3	=	0.0
a1	=	0.0
a2	=	0.0
a3	=	0.0







With	duffing	term

The	duffing	term	has	to	be	pretty	large	to	see	any	stiffening	effect.	Set	 	and	 	(still	without	coupling).

Read	data,	experiment	0
Variables	(rows	x	observations):		('x',	'y',	's',	'f',	'v',	't',	'XResAmp',	'XResfFreq',	'YResAmp',	
'YResfFreq')
Resonnance	frequencies:	(7600,	8100)
Resonnance	amplitudes:	(1.03,	1.10)
T	=	55.78
t	in	[0.00,	55.78]
f	in	[0.0,	10000.0]
x	shape:	101	x	100
y	shape:	101	x	100
Parameters:
Omega_r	1	=	47752.2
Omega_r	2	=	50893.8
Omega0	1	=	48237.0
Omega0	2	=	51410.5
c1	=	9647.4
c2	=	10282.1
c3	=	0.0
k1	=	2326809592.7
k2	=	2643039774.5
k3	=	0.0
a1	=	3490214389022.0
a2	=	3964559661768.2
a3	=	0.0







Loss	function
Given	the	two	multivariate	signals,	one	empirical	and	one	simulated,	we	need	a	distance	metric	 	that	quantifies	the
error	of	our	simulation.

Consider	first	a	single	frequency	 .	Treat	each	component	individually,	perform	autocorrelation	do	find	the	shift,	then
simply	use	mean	squared	error	as	the	distance	metric	between	the	two	common	periods	of	 	and	 .	We	extend	this	to	the	multivariate
case	by	simply	averaging	the	loss	for	each	frequency.

TODO:	Assert	that	both	components	of	 	have	the	same	shift.

Loss	function	test

Random	signals	and	sines.



Loss	for	model

Plotting	normalized	signals.

X	idx:	32.0000	mean,	0.0000	std
Y	idx:	1.0000	mean,	0.0000	std
X	coeffs:	0.1348	mean,	0.0000	std
Y	coeffs:	0.1414	mean,	0.0000	std
X	MSEs:	1.4426	mean,	0.0000	std
Y	MSEs:	1.7080	mean,	0.0000	std
Loss:	3.1506

X	idx:	5.0000	mean,	0.0000	std
Y	idx:	15.0000	mean,	0.0000	std
X	coeffs:	0.9416	mean,	0.0000	std
Y	coeffs:	0.8535	mean,	0.0000	std
X	MSEs:	0.0022	mean,	0.0000	std
Y	MSEs:	0.0127	mean,	0.0000	std
Loss:	0.0149

X	idx:	18.5000	mean,	13.5000	std
Y	idx:	8.0000	mean,	7.0000	std
X	coeffs:	0.5382	mean,	0.4034	std
Y	coeffs:	0.4975	mean,	0.3560	std
X	MSEs:	0.7224	mean,	0.7202	std
Y	MSEs:	0.8603	mean,	0.8476	std
Loss:	1.5827

X	idx:	25.0000	mean,	17.5357	std
Y	idx:	15.2500	mean,	9.2432	std
X	coeffs:	0.0720	mean,	0.0817	std
Y	coeffs:	0.0795	mean,	0.0590	std
X	MSEs:	1.8373	mean,	0.1778	std
Y	MSEs:	1.8084	mean,	0.1515	std
Loss:	3.6457






