1047 lines
83 KiB
Plaintext
1047 lines
83 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib notebook\n",
|
|
"import numpy as np\n",
|
|
"from scipy.integrate import odeint, quad\n",
|
|
"from scipy.optimize import brentq\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from matplotlib import animation, rc\n",
|
|
"import seaborn as sbs\n",
|
|
"#rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size': 20})\n",
|
|
"#rc('text', usetex=True)\n",
|
|
"#rc('animation', html='jshtml')\n",
|
|
"#plt.rcParams[\"animation.html\"] = \"jshtml\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def deriv(X, t, omega, gamma, alpha, delta, beta):\n",
|
|
" \"\"\"Return the derivatives dx/dt and d2x/dt2.\"\"\"\n",
|
|
" \n",
|
|
" #dVdx = lambda x: x**3 - x\n",
|
|
" x, xdot = X\n",
|
|
" xdotdot = gamma*np.cos(omega*t) - delta*xdot + alpha*x - beta*x*x*x\n",
|
|
" return xdot, xdotdot\n",
|
|
"\n",
|
|
"def solve_duffing(tmax, dt_per_period, t_trans, x0, v0, params):\n",
|
|
" \"\"\"Solve the Duffing equation for parameters gamma, delta, omega.\n",
|
|
" \n",
|
|
" Find the numerical solution to the Duffing equation using a suitable\n",
|
|
" time grid: tmax is the maximum time (s) to integrate to; t_trans is\n",
|
|
" the initial time period of transient behaviour until the solution\n",
|
|
" settles down (if it does) to some kind of periodic motion (these data\n",
|
|
" points are dropped) and dt_per_period is the number of time samples\n",
|
|
" (of duration dt) to include per period of the driving motion (frequency\n",
|
|
" omega).\n",
|
|
" \n",
|
|
" Returns the time grid, t (after t_trans), position, x, and velocity,\n",
|
|
" xdot, dt, and step, the number of array points per period of the driving\n",
|
|
" motion.\n",
|
|
" \n",
|
|
" \"\"\"\n",
|
|
" # Time point spacings and the time grid\n",
|
|
"\n",
|
|
" omega, gamma, alpha, delta, beta = params\n",
|
|
" period = 2*np.pi/omega\n",
|
|
" dt = 2*np.pi/omega / dt_per_period\n",
|
|
" step = int(period / dt)\n",
|
|
" t = np.arange(0, tmax, dt)\n",
|
|
" # Initial conditions: x, xdot\n",
|
|
" X0 = [x0, v0]\n",
|
|
" X = odeint(deriv, X0, t, args=params)\n",
|
|
" idx = int(t_trans / dt)\n",
|
|
" return t[idx:], X[idx:], dt, step"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Set up the motion for a oscillator with initial position\n",
|
|
"# x0 and initially at rest.\n",
|
|
"x0, v0 = 1, 0.1\n",
|
|
"tmax, t_trans = 10000, 100\n",
|
|
"dt_per_period = 500\n",
|
|
"\n",
|
|
"omega = 1.0\n",
|
|
"gamma = 0.4\n",
|
|
"alpha = 1.0\n",
|
|
"delta = 0.1\n",
|
|
"beta = 1.0\n",
|
|
"\n",
|
|
"omega = 1.4\n",
|
|
"gamma, delta = 0.4, 0.1\n",
|
|
"\n",
|
|
"\n",
|
|
"params = (omega, gamma, alpha, delta, beta)\n",
|
|
"xs = []"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(1102945,)\n",
|
|
"(1102945,)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Solve the equation of motion.\n",
|
|
"params = (omega, gamma, alpha, delta, 0.01)\n",
|
|
"t, X, dt, pstep = solve_duffing(tmax, dt_per_period, t_trans, x0, v0, params)\n",
|
|
"x, xdot = X.T\n",
|
|
"xs.append(x)\n",
|
|
"print(t.shape)\n",
|
|
"print(x.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Solve the equation of motion.\n",
|
|
"#params = (omega, gamma, 1.2, delta, 0.1)\n",
|
|
"#t, X, dt, pstep = solve_duffing(tmax, dt_per_period, t_trans, x0, v0, params)\n",
|
|
"#x, xdot = X.T\n",
|
|
"#xs.append(x)\n",
|
|
"#print(t.shape)\n",
|
|
"#print(x.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(1102945,)\n",
|
|
"(1102945,)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Solve the equation of motion.\n",
|
|
"params = (omega, gamma, alpha, delta, 1.0)\n",
|
|
"t, X, dt, pstep = solve_duffing(tmax, dt_per_period, t_trans, x0, v0, params)\n",
|
|
"x, xdot = X.T\n",
|
|
"xs.append(x)\n",
|
|
"print(t.shape)\n",
|
|
"print(x.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def tsanim(tss):\n",
|
|
" \"Plot an array of time series data t, x = [ti], [xi].\"\n",
|
|
" nrows = len(tss)\n",
|
|
" fig, axes = plt.subplots(nrows=nrows, ncols=1)\n",
|
|
" tsmax = lambda ts: max(len(ts[0]), len(ts[1]))\n",
|
|
" ts_maxlen = max(map(tsmax, tss))\n",
|
|
" tinit = int(0.1*ts_maxlen)\n",
|
|
" print(\"Animate time series from t=%d with %d frames\" % (tinit, ts_maxlen))\n",
|
|
"\n",
|
|
" def tsplot(ax, ts):\n",
|
|
" t, x = ts\n",
|
|
" ax.set_ylabel(r'$x [\\mathrm{m}]$')\n",
|
|
" ax.set_ylim(np.min(x), np.max(x))\n",
|
|
" line, = ax.plot(t[:tinit], x[:tinit])\n",
|
|
" return line\n",
|
|
" \n",
|
|
" lines = list(map(lambda axts: tsplot(*axts), zip(axes, tss)))\n",
|
|
" axes[-1].set_xlabel(r'$t [\\mathrm{s}]$')\n",
|
|
"\n",
|
|
" def animate(i):\n",
|
|
" \"\"\"Update the image for iteration i of the Matplotlib animation.\"\"\"\n",
|
|
" for ax, line, ts in zip(axes, lines, tss):\n",
|
|
" t, x = ts\n",
|
|
" line.set_data(t[:i+1], x[:i+1])\n",
|
|
" ax.set_xlim(t_trans, t[i])\n",
|
|
" return\n",
|
|
"\n",
|
|
" #plt.tight_layout()\n",
|
|
" \n",
|
|
" #tmp\n",
|
|
" fig.suptitle(\"Duffing oscillator, beta = 0.01 (top) and 1.0 (bottom)\")\n",
|
|
" \n",
|
|
" anim = animation.FuncAnimation(fig, animate, frames=20000, interval=1)\n",
|
|
" return anim"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Animate time series from t=110294 with 1102945 frames\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"anim = tsanim([(t, x) for x in xs])\n",
|
|
"#anim.save('animations/duffing-test.mp4', writer='ffmpeg')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"anim.save('animations/duffing-oscillator-nonlinearity-comparison.mp4', writer='ffmpeg')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"anaconda-cloud": {},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|