5805 lines
1.2 MiB
5805 lines
1.2 MiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Duffing-stuffing parameter estimation\n",
|
|
"\n",
|
|
"Goals:\n",
|
|
"\n",
|
|
" * Estimate parameters for a Duffing-like model such that it describes the behavior of the system with low error in different experimental schemes (varying resonnance frequencies, degradation, etc.).\n",
|
|
" * Simulate the system and perform various analyses (sensitivity, stability, etc.)\n",
|
|
" \n",
|
|
"\n",
|
|
"## Table of contents\n",
|
|
"\n",
|
|
" 1. [Empirical data](#empiric-data)\n",
|
|
" 2. [Frequency response](#frequency-response)\n",
|
|
" 3. [Model](#model)\n",
|
|
" 4. [Loss function](#loss-function)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib notebook\n",
|
|
"\n",
|
|
"import os\n",
|
|
"import numpy as np\n",
|
|
"import random\n",
|
|
"import itertools\n",
|
|
"from scipy.stats import skew\n",
|
|
"from scipy.interpolate import interp1d\n",
|
|
"from tqdm import tqdm_notebook as tqdm\n",
|
|
"from toolz import curry\n",
|
|
"from scipy import signal\n",
|
|
"from scipy.optimize import minimize\n",
|
|
"from scipy.io import loadmat\n",
|
|
"\n",
|
|
"# PyDSTool requires scipy 0.X\n",
|
|
"# However, solve_ivp was introduced in scipy 1.X.\n",
|
|
"from scipy.integrate import odeint, solve_ivp\n",
|
|
"#from pydstool_integrator import simulate as ds_simulate\n",
|
|
"\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"#from matplotlib import animation\n",
|
|
"#plt.rcParams[\"animation.html\"] = \"jshtml\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<a name=\"empiric-data\"></a>\n",
|
|
"## Empirical data\n",
|
|
"\n",
|
|
"Data is measured through frequency scans at lab.\n",
|
|
"\n",
|
|
"Read data from `.mat`-files as a dict of numpy arrays. We focus primarily on the XY-trace data, containing a stable-state period of 100 observations per frequency, for 5 experiments total with variying resonnance frequencies."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def read_xy(matfile, experiment_no):\n",
|
|
" \"\"\"Experiment number in [0, 5]\"\"\"\n",
|
|
" xy = loadmat(matfile)['XYPost'][0, experiment_no]\n",
|
|
" print(\"Variables (rows x observations): \", xy.dtype.names)\n",
|
|
" xy_data = dict([(k, xy[i]) for i, k in enumerate(xy.dtype.names)])\n",
|
|
" t_min, t_max = xy_data['t'][0,0], xy_data['t'][-1,0]\n",
|
|
" f_min, f_max = xy_data['f'][0,0], xy_data['f'][-1,0]\n",
|
|
" print(\"Resonnance frequencies: (%d, %d)\" % (xy_data['XResfFreq'][0,0], xy_data['YResfFreq'][0,0]))\n",
|
|
" print(\"Resonnance amplitudes: (%.2f, %.2f)\" % (xy_data['XResAmp'][0,0], xy_data['YResAmp'][0,0]))\n",
|
|
" print(\"T = %.2f\" % (t_max - t_min,))\n",
|
|
" print(\"t in [%.2f, %.2f]\" % (t_min, t_max))\n",
|
|
" print(\"f in [%.1f, %.1f]\" % (f_min, f_max))\n",
|
|
" print(\"x shape: %d x %d\" % xy_data['x'].shape)\n",
|
|
" print(\"y shape: %d x %d\" % xy_data['y'].shape)\n",
|
|
" return xy_data\n",
|
|
"\n",
|
|
"\n",
|
|
"def read_amp(matfile):\n",
|
|
" ds_name = os.path.splitext(os.path.basename(matfile))[0]\n",
|
|
" print(\"Reading ds '%s'\" % ds_name)\n",
|
|
" amp = loadmat(matfile)[ds_name]\n",
|
|
" _, n_vars = amp.shape\n",
|
|
" amp_data = dict([(amp[0,i][1][0][0][0], amp[0,i][0][:,0]) for i in range(n_vars)])\n",
|
|
" print(\"Variables: %s\" % ','.join(amp_data.keys()))\n",
|
|
" return amp_data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Reading first experiment\n",
|
|
"Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp', 'YResfFreq')\n",
|
|
"Resonnance frequencies: (7600, 8100)\n",
|
|
"Resonnance amplitudes: (1.03, 1.10)\n",
|
|
"T = 55.78\n",
|
|
"t in [0.00, 55.78]\n",
|
|
"f in [0.0, 10000.0]\n",
|
|
"x shape: 101 x 100\n",
|
|
"y shape: 101 x 100\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Read first experiment\n",
|
|
"print(\"Reading first experiment\")\n",
|
|
"xy_data = read_xy('data/XYPost.mat', 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#amp_pre = read_amp('data/APre.mat')\n",
|
|
"#amp_post = read_amp('data/APost.mat')\n",
|
|
"#amp_postb = read_amp('data/APostB.mat')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Plotting\n",
|
|
"\n",
|
|
"Three types of plots:\n",
|
|
"\n",
|
|
" * Frequency scan with amplitude mean/std.\n",
|
|
" * Trajectory plot in (x, y)-plane.\n",
|
|
" * Trajectory over time for x and y."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def plot_std_freqscan(xy_data):\n",
|
|
" linewidth = 0.6\n",
|
|
" fig, (ax11, ax12) = plt.subplots(\n",
|
|
" nrows=1,\n",
|
|
" ncols=2,\n",
|
|
" figsize=(8, 4)\n",
|
|
" )\n",
|
|
" rows = list(filter(\n",
|
|
" lambda r: xy_data['f'][r,0] != 0,\n",
|
|
" range(xy_data['f'].shape[0])\n",
|
|
" ))\n",
|
|
" ax11.errorbar(\n",
|
|
" xy_data['f'][rows,0],\n",
|
|
" np.mean(xy_data['x'][rows, :], axis=1),\n",
|
|
" np.std(xy_data['x'][rows, :], axis=1),\n",
|
|
" linewidth=linewidth\n",
|
|
" )\n",
|
|
" ax11.axvline(x=xy_data['XResfFreq'][0,0], linestyle='--', color='red', linewidth=0.8)\n",
|
|
" ax11.axvline(x=xy_data['YResfFreq'][0,0], linestyle='--', color='red', linewidth=0.8)\n",
|
|
" ax11.set_xlabel(r'$f$')\n",
|
|
" ax11.set_ylabel(r'$x$')\n",
|
|
" ax12.errorbar(\n",
|
|
" xy_data['f'][rows,0],\n",
|
|
" np.mean(xy_data['y'][rows, :], axis=1),\n",
|
|
" np.std(xy_data['y'][rows, :], axis=1),\n",
|
|
" linewidth=linewidth\n",
|
|
" )\n",
|
|
" ax12.axvline(x=xy_data['XResfFreq'][0,0], linestyle='--', color='red', linewidth=0.8)\n",
|
|
" ax12.axvline(x=xy_data['YResfFreq'][0,0], linestyle='--', color='red', linewidth=0.8)\n",
|
|
" ax12.set_xlabel(r'$f$')\n",
|
|
" ax12.set_ylabel(r'$y$')\n",
|
|
" plt.suptitle(\"Amplitude mean and standard deviation per frequency\\nRed lines are resonnance frequencies\")\n",
|
|
" #plt.tight_layout()\n",
|
|
" \n",
|
|
" \n",
|
|
"def plot_xy(rows, xy_data):\n",
|
|
" linewidth = 0.6\n",
|
|
" fig, ((ax11, ax12), (ax21, ax22)) = plt.subplots(\n",
|
|
" nrows=2,\n",
|
|
" ncols=2,\n",
|
|
" figsize=(8, 6)\n",
|
|
" )\n",
|
|
" for row in rows:\n",
|
|
" ax11.plot(xy_data['x'][row, :], linewidth=linewidth)\n",
|
|
" ax12.plot(xy_data['y'][row, :], linewidth=linewidth)\n",
|
|
" ax21.plot(xy_data['x'][row, :], xy_data['y'][row, :], linewidth=linewidth)\n",
|
|
" ax22.plot(xy_data['f'][row, :])\n",
|
|
" \n",
|
|
" ax11.set_ylabel(r'$x$')\n",
|
|
" ax12.set_ylabel(r'$y$')\n",
|
|
" ax21.set_xlabel(r'$x$')\n",
|
|
" ax21.set_ylabel(r'$y$')\n",
|
|
" ax22.set_ylabel(r'$f$')\n",
|
|
" plt.suptitle(\"XY-data plots for given frequencies\")\n",
|
|
" #plt.tight_layout()\n",
|
|
" \n",
|
|
" \n",
|
|
"def plot_xyt(rows, xy_data, normalizer=lambda x: x, sim_xy_data=None):\n",
|
|
" N = len(rows)\n",
|
|
" linewidth = 0.6\n",
|
|
" fig, axes = plt.subplots(\n",
|
|
" nrows=N,\n",
|
|
" ncols=2,\n",
|
|
" #sharey=True,\n",
|
|
" #sharex=True,\n",
|
|
" figsize=(8, 3*N)\n",
|
|
" )\n",
|
|
" for i in range(N):\n",
|
|
" axes[i,0].plot(normalizer(xy_data['x'][rows[i], :]), linewidth=linewidth)\n",
|
|
" axes[i,1].plot(normalizer(xy_data['y'][rows[i], :]), linewidth=linewidth)\n",
|
|
" if sim_xy_data is not None:\n",
|
|
" axes[i,0].plot(normalizer(sim_xy_data['x'][rows[i], :]), linewidth=linewidth)\n",
|
|
" axes[i,1].plot(normalizer(sim_xy_data['y'][rows[i], :]), linewidth=linewidth)\n",
|
|
" axes[i,0].set_ylabel('$x$ ($f$=%d)' % xy_data['f'][rows[i], 0])\n",
|
|
" axes[i,1].set_ylabel('$y$ ($f$=%d)' % xy_data['f'][rows[i], 0])\n",
|
|
" plt.suptitle(\"Stable-state XY-data plots for given frequencies\")\n",
|
|
" #plt.tight_layout()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Variables (rows x observations): ('x', 'y', 's', 'f', 'v', 't', 'XResAmp', 'XResfFreq', 'YResAmp', 'YResfFreq')\n",
|
|
"Resonnance frequencies: (7600, 8100)\n",
|
|
"Resonnance amplitudes: (1.03, 1.10)\n",
|
|
"T = 55.78\n",
|
|
"t in [0.00, 55.78]\n",
|
|
"f in [0.0, 10000.0]\n",
|
|
"x shape: 101 x 100\n",
|
|
"y shape: 101 x 100\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"800\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"800\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"800\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Plot freqency scans (mean +- variation)\n",
|
|
"rows = [50, 65, 70, 75, 80, 85, 90, 100]\n",
|
|
"for exp_no in range(5):\n",
|
|
" xy_data = read_xy('data/XYPost.mat', exp_no)\n",
|
|
" plot_std_freqscan(xy_data)\n",
|
|
" plot_xy(rows, xy_data)\n",
|
|
" plot_xyt(rows, xy_data)\n",
|
|
" break"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<a name=\"frequency-response\"></a>\n",
|
|
"## Frequency response\n",
|
|
"\n",
|
|
"Simulating the model takes requires considerable resources, thus we are dependent on finding a good set of first-guess parameters $\\mathbf{\\theta}$. We do this by minimizing the MSE of the freqency response.\n",
|
|
"\n",
|
|
"The frequency response is estimated by the implicit function\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\frac{\\gamma^2}{z^2} &= (\\omega^2 - \\alpha - \\frac{3}{4}\\beta z^2)^2 + (\\delta \\omega)^2 \\implies \\\\\n",
|
|
"\\frac{z}{\\gamma} &= \\frac{1}{\\sqrt{(\\omega^2 - \\alpha - \\frac{3}{4}\\beta z^2)^2 + (\\delta \\omega)^2}} \\implies \\\\\n",
|
|
"F &= G\n",
|
|
"\\end{align}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"def right(gamma, alpha, beta, delta, z, omega):\n",
|
|
" denom = (omega**2 - alpha - (3/4)*beta*z**2)**2 + (delta*omega)**2\n",
|
|
" return gamma/np.sqrt(denom)\n",
|
|
"\n",
|
|
"gamma = 1\n",
|
|
"alpha = 1\n",
|
|
"beta_mul = 0.01\n",
|
|
"delta = 0.1\n",
|
|
"\n",
|
|
"z, omega = np.meshgrid(\n",
|
|
" np.linspace(0, 15, 500),\n",
|
|
" np.linspace(0, 2, 500)\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for beta in (-0.3, 0.0, 1, 4):\n",
|
|
" G = right(gamma, alpha, beta*beta_mul, delta, z, omega)\n",
|
|
" plt.contour(omega, z, (z-G), [0])\n",
|
|
" plt.xlabel(\"$\\omega$\")\n",
|
|
" plt.ylabel(\"$z$\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def right(gamma, alpha, beta, delta, z, f):\n",
|
|
" omega = 2*np.pi*f\n",
|
|
" denom = (omega**2 - alpha - (3/4)*beta*z**2)**2 + (delta*omega)**2\n",
|
|
" return gamma/np.sqrt(denom)\n",
|
|
"\n",
|
|
"def get_pointmap(gamma, alpha, beta, delta, z, f):\n",
|
|
" fig = plt.figure()\n",
|
|
" G = right(gamma, alpha, beta, delta, z, f)\n",
|
|
" cs = plt.contour(f, z, (z-G), [0])\n",
|
|
" p = cs.collections[0].get_paths()[0]\n",
|
|
" v = p.vertices\n",
|
|
" plt.close(fig)\n",
|
|
" return v[:,0][::-1], v[:,1][::-1]\n",
|
|
"\n",
|
|
"def clip_pointmap(xs, ys):\n",
|
|
" # If softening spring, mirror the distribution across 0 and back\n",
|
|
" if skew(xs) > 0:\n",
|
|
" # Is order/direction different when softening?\n",
|
|
" raise NotImplementedError()\n",
|
|
" _xs, _ys = clip_pointmap(-1*xs, ys)\n",
|
|
" return -1*_xs, _ys\n",
|
|
" \n",
|
|
" # Find peak and continue s.t. x is monotonically increasing\n",
|
|
" indexes = []\n",
|
|
" N = len(xs)\n",
|
|
" max_x = xs[0] - 1e-9\n",
|
|
" for i in range(0, N):\n",
|
|
" if xs[i] > max_x:\n",
|
|
" indexes.append(i)\n",
|
|
" max_x = xs[i]\n",
|
|
" return xs[indexes], ys[indexes]\n",
|
|
"\n",
|
|
"def resample_pointmap(xs, ys, n):\n",
|
|
" lin = interp1d(xs, ys)\n",
|
|
" new_xs = np.linspace(xs[0], xs[-1], n)\n",
|
|
" return new_xs, lin(new_xs)\n",
|
|
"\n",
|
|
"def sample_frequency_response(n, gamma, alpha, beta, delta, z, f):\n",
|
|
" plt.ioff()\n",
|
|
" xs, ys = get_pointmap(gamma, alpha, beta, delta, zs, fs)\n",
|
|
" plt.ion()\n",
|
|
" xs, ys = clip_pointmap(xs, ys)\n",
|
|
" return resample_pointmap(xs, ys, n)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function() {\n",
|
|
" if (typeof(WebSocket) !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert('Your browser does not have WebSocket support.' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.');\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent = (\n",
|
|
" \"This browser does not support binary websocket messages. \" +\n",
|
|
" \"Performance may be slow.\");\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = $('<div/>');\n",
|
|
" this._root_extra_style(this.root)\n",
|
|
" this.root.attr('style', 'display: inline-block');\n",
|
|
"\n",
|
|
" $(parent_element).append(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
|
" fig.send_message(\"send_image_mode\", {});\n",
|
|
" if (mpl.ratio != 1) {\n",
|
|
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
|
" }\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj.onload = function() {\n",
|
|
" if (fig.image_mode == 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function() {\n",
|
|
" fig.ws.close();\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function() {\n",
|
|
" var titlebar = $(\n",
|
|
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
|
" 'ui-helper-clearfix\"/>');\n",
|
|
" var titletext = $(\n",
|
|
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
|
" 'text-align: center; padding: 3px;\"/>');\n",
|
|
" titlebar.append(titletext)\n",
|
|
" this.root.append(titlebar);\n",
|
|
" this.header = titletext[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = $('<div/>');\n",
|
|
"\n",
|
|
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
|
"\n",
|
|
" function canvas_keyboard_event(event) {\n",
|
|
" return fig.key_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
|
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
|
" this.canvas_div = canvas_div\n",
|
|
" this._canvas_extra_style(canvas_div)\n",
|
|
" this.root.append(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = $('<canvas/>');\n",
|
|
" canvas.addClass('mpl-canvas');\n",
|
|
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
|
"\n",
|
|
" this.canvas = canvas[0];\n",
|
|
" this.context = canvas[0].getContext(\"2d\");\n",
|
|
"\n",
|
|
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
|
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
|
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
|
"\tthis.context.msBackingStorePixelRatio ||\n",
|
|
"\tthis.context.oBackingStorePixelRatio ||\n",
|
|
"\tthis.context.backingStorePixelRatio || 1;\n",
|
|
"\n",
|
|
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband = $('<canvas/>');\n",
|
|
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
|
"\n",
|
|
" var pass_mouse_events = true;\n",
|
|
"\n",
|
|
" canvas_div.resizable({\n",
|
|
" start: function(event, ui) {\n",
|
|
" pass_mouse_events = false;\n",
|
|
" },\n",
|
|
" resize: function(event, ui) {\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" stop: function(event, ui) {\n",
|
|
" pass_mouse_events = true;\n",
|
|
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
|
" },\n",
|
|
" });\n",
|
|
"\n",
|
|
" function mouse_event_fn(event) {\n",
|
|
" if (pass_mouse_events)\n",
|
|
" return fig.mouse_event(event, event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
|
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
|
"\n",
|
|
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
|
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
|
"\n",
|
|
" canvas_div.on(\"wheel\", function (event) {\n",
|
|
" event = event.originalEvent;\n",
|
|
" event['data'] = 'scroll'\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" mouse_event_fn(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.append(canvas);\n",
|
|
" canvas_div.append(rubberband);\n",
|
|
"\n",
|
|
" this.rubberband = rubberband;\n",
|
|
" this.rubberband_canvas = rubberband[0];\n",
|
|
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
|
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
|
"\n",
|
|
" this._resize_canvas = function(width, height) {\n",
|
|
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
|
" // canvas in synch.\n",
|
|
" canvas_div.css('width', width)\n",
|
|
" canvas_div.css('height', height)\n",
|
|
"\n",
|
|
" canvas.attr('width', width * mpl.ratio);\n",
|
|
" canvas.attr('height', height * mpl.ratio);\n",
|
|
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
|
"\n",
|
|
" rubberband.attr('width', width);\n",
|
|
" rubberband.attr('height', height);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
|
" // upon first draw.\n",
|
|
" this._resize_canvas(600, 600);\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus () {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" // put a spacer in here.\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" var button = $('<button/>');\n",
|
|
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
|
" 'ui-button-icon-only');\n",
|
|
" button.attr('role', 'button');\n",
|
|
" button.attr('aria-disabled', 'false');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
"\n",
|
|
" var icon_img = $('<span/>');\n",
|
|
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
|
" icon_img.addClass(image);\n",
|
|
" icon_img.addClass('ui-corner-all');\n",
|
|
"\n",
|
|
" var tooltip_span = $('<span/>');\n",
|
|
" tooltip_span.addClass('ui-button-text');\n",
|
|
" tooltip_span.html(tooltip);\n",
|
|
"\n",
|
|
" button.append(icon_img);\n",
|
|
" button.append(tooltip_span);\n",
|
|
"\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker_span = $('<span/>');\n",
|
|
"\n",
|
|
" var fmt_picker = $('<select/>');\n",
|
|
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
|
" fmt_picker_span.append(fmt_picker);\n",
|
|
" nav_element.append(fmt_picker_span);\n",
|
|
" this.format_dropdown = fmt_picker[0];\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = $(\n",
|
|
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
|
" fmt_picker.append(option)\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add hover states to the ui-buttons\n",
|
|
" $( \".ui-button\" ).hover(\n",
|
|
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
|
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
|
" );\n",
|
|
"\n",
|
|
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function() {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1]);\n",
|
|
" fig.send_message(\"refresh\", {});\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
|
" var x0 = msg['x0'] / mpl.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
|
" var x1 = msg['x1'] / mpl.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
|
" var cursor = msg['cursor'];\n",
|
|
" switch(cursor)\n",
|
|
" {\n",
|
|
" case 0:\n",
|
|
" cursor = 'pointer';\n",
|
|
" break;\n",
|
|
" case 1:\n",
|
|
" cursor = 'default';\n",
|
|
" break;\n",
|
|
" case 2:\n",
|
|
" cursor = 'crosshair';\n",
|
|
" break;\n",
|
|
" case 3:\n",
|
|
" cursor = 'move';\n",
|
|
" break;\n",
|
|
" }\n",
|
|
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" evt.data.type = \"image/png\";\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" evt.data);\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig[\"handle_\" + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"}\n",
|
|
"\n",
|
|
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function(e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e)\n",
|
|
" e = window.event;\n",
|
|
" if (e.target)\n",
|
|
" targ = e.target;\n",
|
|
" else if (e.srcElement)\n",
|
|
" targ = e.srcElement;\n",
|
|
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
"\n",
|
|
" // jQuery normalizes the pageX and pageY\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" // offset() returns the position of the element relative to the document\n",
|
|
" var x = e.pageX - $(targ).offset().left;\n",
|
|
" var y = e.pageY - $(targ).offset().top;\n",
|
|
"\n",
|
|
" return {\"x\": x, \"y\": y};\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * http://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys (original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object')\n",
|
|
" obj[key] = original[key]\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event)\n",
|
|
"\n",
|
|
" if (name === 'button_press')\n",
|
|
" {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * mpl.ratio;\n",
|
|
" var y = canvas_pos.y * mpl.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
|
"\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name == 'key_press')\n",
|
|
" {\n",
|
|
" if (event.which === this._key)\n",
|
|
" return;\n",
|
|
" else\n",
|
|
" this._key = event.which;\n",
|
|
" }\n",
|
|
" if (name == 'key_release')\n",
|
|
" this._key = null;\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.which != 17)\n",
|
|
" value += \"ctrl+\";\n",
|
|
" if (event.altKey && event.which != 18)\n",
|
|
" value += \"alt+\";\n",
|
|
" if (event.shiftKey && event.which != 16)\n",
|
|
" value += \"shift+\";\n",
|
|
"\n",
|
|
" value += 'k';\n",
|
|
" value += event.which.toString();\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, {key: value,\n",
|
|
" guiEvent: simpleKeys(event)});\n",
|
|
" return false;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
|
" if (name == 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message(\"toolbar_button\", {name: name});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.close = function() {\n",
|
|
" comm.close()\n",
|
|
" };\n",
|
|
" ws.send = function(m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function(msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(msg['content']['data'])\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = $(\"#\" + id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
|
"\n",
|
|
" function ondownload(figure, format) {\n",
|
|
" window.open(figure.imageObj.src);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy,\n",
|
|
" ondownload,\n",
|
|
" element.get(0));\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element.get(0);\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var output_index = fig.cell_info[2]\n",
|
|
" var cell = fig.cell_info[0];\n",
|
|
"\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
|
" var width = fig.canvas.width/mpl.ratio\n",
|
|
" fig.root.unbind('remove')\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable()\n",
|
|
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width/mpl.ratio\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message(\"ack\", {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function() {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var nav_element = $('<div/>')\n",
|
|
" nav_element.attr('style', 'width: 100%');\n",
|
|
" this.root.append(nav_element);\n",
|
|
"\n",
|
|
" // Define a callback function for later on.\n",
|
|
" function toolbar_event(event) {\n",
|
|
" return fig.toolbar_button_onclick(event['data']);\n",
|
|
" }\n",
|
|
" function toolbar_mouse_event(event) {\n",
|
|
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
|
" }\n",
|
|
"\n",
|
|
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) { continue; };\n",
|
|
"\n",
|
|
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
|
" button.click(method_name, toolbar_event);\n",
|
|
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
|
" nav_element.append(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
|
" nav_element.append(status_bar);\n",
|
|
" this.message = status_bar[0];\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
|
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
|
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
|
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
|
" buttongrp.append(button);\n",
|
|
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
|
" titlebar.prepend(buttongrp);\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
|
" var fig = this\n",
|
|
" el.on(\"remove\", function(){\n",
|
|
"\tfig.close_ws(fig, {});\n",
|
|
" });\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.attr('tabindex', 0)\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
" else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
|
" var manager = IPython.notebook.keyboard_manager;\n",
|
|
" if (!manager)\n",
|
|
" manager = IPython.keyboard_manager;\n",
|
|
"\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which == 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" event.shiftKey = false;\n",
|
|
" // Send a \"J\" for go to next cell\n",
|
|
" event.which = 74;\n",
|
|
" event.keyCode = 74;\n",
|
|
" manager.command_mode();\n",
|
|
" manager.handle_keydown(event);\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function(html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i=0; i<ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code'){\n",
|
|
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] == html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel != null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7f7161a81128>]"
|
|
]
|
|
},
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"f_resonance = 8e3\n",
|
|
"omega_resonance = 2*np.pi*f_resonance\n",
|
|
"\n",
|
|
"gamma = 1e7\n",
|
|
"alpha = omega_resonance**2\n",
|
|
"beta = 2e8\n",
|
|
"delta = 200\n",
|
|
"\n",
|
|
"zs, fs = np.meshgrid(\n",
|
|
" np.linspace(0, 1.2, 500),\n",
|
|
" np.linspace(7e3, 9e3, 500)\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"G = right(gamma, alpha, beta, delta, zs, fs)\n",
|
|
"plt.contour(fs, zs, (zs-G), [0])\n",
|
|
"plt.xlabel(\"$\\omega$\")\n",
|
|
"plt.ylabel(\"$z$\")\n",
|
|
"\n",
|
|
"n = 100\n",
|
|
"xs, ys = sample_frequency_response(n, gamma, alpha, beta, delta, zs, fs)\n",
|
|
"plt.figure()\n",
|
|
"plt.plot(xs, ys)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"@curry\n",
|
|
"def frequency_objective(omega, p):\n",
|
|
" obj = 0.0\n",
|
|
" # Simulate and return MSE(xy_data, sim_xy_data)\n",
|
|
" return obj\n",
|
|
"\n",
|
|
"p0 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)\n",
|
|
"bounds = [\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2)\n",
|
|
"]\n",
|
|
"#omegas = xy_data['f'][:,0].tolist()\n",
|
|
"#solution = minimize(objective(omega), p0, method='SLSQP', bounds=bounds)\n",
|
|
"#p = solution.x\n",
|
|
"\n",
|
|
"# Simulate with updated values\n",
|
|
"#t, X, dt, pstep = model(T, t_trans, dt_per_period, x0, v0, omega, p)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<a name=\"model\"></a>\n",
|
|
"## Model\n",
|
|
"\n",
|
|
"Model derived from Duffing equations:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"m_1 \\ddot{y}_1 &= F_1 - \\dot{y}_1(c_1 + c_3) + \\dot{y}_2c_3 - y_1(k_1 + k_3) + y_2k_3 - \\alpha_1y_1^3 + \\alpha_3(y_2 - y_1)^3 \\\\\n",
|
|
"m_2 \\ddot{y}_2 &= F_2 - \\dot{y}_2(c_2 + c_3) + \\dot{y}_1c_3 - x_2(k_2 + k_3) + y_1k_3 - \\alpha_2y_2^3 + \\alpha_3(y_2 - y_1)^3 \\\\\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
"where $F = Ce^{i\\omega t}$. Transform to first-order form by variable substitutions $x_3 = \\dot{y}_1, x_1 = y_1$ and $x_4 = \\dot{y}_2, x_2 = y_2$:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\dot{x}_1 &= x_3 \\\\\n",
|
|
"\\dot{x}_2 &= x_4 \\\\\n",
|
|
"m_1\\dot{x}_3 &= F_1 - x_3(c_1 + c_3) + x_4c_3 - x_1(k_1 + k_3) + x_2k_3 - \\alpha_1x_1^3 + \\alpha_3(x_2 - x_1)^3 \\\\\n",
|
|
"m_2\\dot{x}_4 &= F_2 - x_4(c_2 + c_3) + x_3c_3 - x_2(k_2 + k_3) + x_1k_3 - \\alpha_2x_2^3 + \\alpha_3(x_2 - x_1)^3 \\\\\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
"\n",
|
|
"For some reason, this model doesn't work out when working backwards from resonnance frequencies. I may be missing something obvious, otherwise the fact that mass goes into the estimations may mess things up.\n",
|
|
"\n",
|
|
"\n",
|
|
"### Transformed model\n",
|
|
"\n",
|
|
"Eliminate mass, + easier to reason about physical constants:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\dot{x}_1 &= x_3 \\\\\n",
|
|
"\\dot{x}_2 &= x_4 \\\\\n",
|
|
"\\dot{x}_3 &= \\frac{1}{m_1}F_1 - x_3(c_1 + c_3) + x_4c_3 - x_1(k_1 + k_3) + x_2k_3 - \\alpha_1x_1^3 + \\alpha_3(x_2 - x_1)^3 \\\\\n",
|
|
"\\dot{x}_4 &= \\frac{1}{m_2}F_2 - x_4(c_2 + c_3) + x_3c_3 - x_2(k_2 + k_3) + x_1k_3 - \\alpha_2x_2^3 + \\alpha_3(x_2 - x_1)^3 \\\\\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
"With the Jacobian $\\mathbf{J} = \\frac{\\partial \\mathbf{f}}{\\partial \\mathbf{X}}$\n",
|
|
"\n",
|
|
"\\begin{bmatrix}\n",
|
|
"0 & 0 & 1 & 0 \\\\\n",
|
|
"0 & 0 & 0 & 1 \\\\\n",
|
|
"-k_1 - k_3 - 3\\alpha_1x_1^2 - 3\\alpha_3(x_2 - x_1)^2 & k_3 + 3\\alpha_3(x_2 - x_1)^2 & -c_1 - c_3 & c_3 \\\\\n",
|
|
"k_3 - 3\\alpha_3(x_2 - x_1)^2 & -k_2 - k_3 - 3\\alpha_2x_2^2 + 3\\alpha_3(x_2 - x_1)^2 & c_3 & -c_2 - c_3\n",
|
|
"\\end{bmatrix}\n",
|
|
"\n",
|
|
"Use the harmonic oscillator identities\n",
|
|
"\n",
|
|
" * Undamped angular frequency:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\omega_0 &= \\sqrt{\\frac{k}{m}}\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
" * Damping ratio:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\zeta &= \\frac{c}{2\\sqrt{mk}}\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
" * Resonant freqency:\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"\\omega_r &= \\omega_0\\sqrt{1-2\\zeta^2}, \\zeta < \\frac{1}{\\sqrt{2}}\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
"and express the constants subject to estimation as\n",
|
|
"\n",
|
|
"\\begin{align}\n",
|
|
"c_1 &= 2 \\zeta_1 \\omega_{0,1} \\\\\n",
|
|
"c_2 &= 2 \\zeta_2 \\omega_{0,2} \\\\\n",
|
|
"c_3 &= g_c(c_1, c_2) \\\\\n",
|
|
"k_1 &= \\omega_{0,1}^2 \\\\\n",
|
|
"k_2 &= \\omega_{0,2}^2 \\\\\n",
|
|
"k_3 &= g_k(k_1, k_2) \\\\\n",
|
|
"\\alpha_1 &= f_1(\\mathbf{X} ; \\theta) \\\\\n",
|
|
"\\alpha_2 &= f_2(\\mathbf{X} ; \\theta) \\\\\n",
|
|
"\\alpha_3 &= g_{\\alpha}(\\alpha_1, \\alpha_2)\n",
|
|
"\\end{align}\n",
|
|
"\n",
|
|
"\n",
|
|
"With the model expressed this way, things make sense and we get resonnance where it should be.\n",
|
|
"\n",
|
|
"\n",
|
|
"### Notes on solvers\n",
|
|
"\n",
|
|
" * We use SciPy's `solve_ivp` to simulate the system. Different methods (RK45, LSODA, Radeau) has been tested with no noticable differences.\n",
|
|
" * The standard `odeint` from SciPy is super shit. It easily diverges and is unstable. They claim to use the standard LSODA solver (same as `solve_ivp` with method='LSODA') but the results are entirely different.\n",
|
|
" * Once we hit the right parameters, the simulation is considerable slower because these are adaptive solvers.\n",
|
|
" * There is an ODE implementation from the [PyDSTool package](https://github.com/robclewley/pydstool) which compiles to C and is much much faster.\n",
|
|
" \n",
|
|
"#### PyDSTool solver\n",
|
|
"\n",
|
|
"The model is implemented with this solver. It's slightly faster, but notoriously more complicated to use. Besides, it requires SciPy version `<1.0` which is not compatible with the rest of this code. Let's stick to scipy's modern solvers."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"@curry\n",
|
|
"def model1(omega, p, t, X):\n",
|
|
" x1, x2, xd1, xd2 = X\n",
|
|
" C1, C2, m1, m2, c1, c2, c3, k1, k2, k3, a1, a2, a3 = p\n",
|
|
" F1 = C1*np.cos(omega*t)\n",
|
|
" F2 = C2*np.cos(omega*t)\n",
|
|
" xdd1 = F1 - xd1*(c1 + c3) + xd2*c3 - x1*(k1 + k3) + x2*k3 - a1*x1**3 + a3*(x2 - x1)**3\n",
|
|
" xdd2 = F2 - xd2*(c2 + c3) + xd1*c3 - x2*(k2 + k3) + x1*k3 - a2*x2**3 + a3*(x2 - x1)**3\n",
|
|
" return xd1, xd2, m1*xdd1, m2*xdd2\n",
|
|
"\n",
|
|
"@curry\n",
|
|
"def model2(omega, p, t, X):\n",
|
|
" x1, x2, xd1, xd2 = X\n",
|
|
" C1, C2, m1, m2, c1, c2, c3, k1, k2, k3, a1, a2, a3 = p\n",
|
|
" xdd1 = C1*np.cos(omega*t)/m1 - xd1*(c1 + c3) + xd2*c3 - x1*(k1 + k3) + x2*k3 - a1*x1**3 + a3*(x2 - x1)**3\n",
|
|
" xdd2 = C2*np.cos(omega*t)/m2 - xd2*(c2 + c3) + xd1*c3 - x2*(k2 + k3) + x1*k3 - a2*x2**3 + a3*(x2 - x1)**3\n",
|
|
" return xd1, xd2, xdd1, xdd2\n",
|
|
"\n",
|
|
"@curry\n",
|
|
"def jacobian2(omega, p, t, X):\n",
|
|
" x1, x2, xd1, xd2 = X\n",
|
|
" C1, C2, m1, m2, c1, c2, c3, k1, k2, k3, a1, a2, a3 = p\n",
|
|
" return np.array([\n",
|
|
" [ 0 , 0 , 1 , 0 ],\n",
|
|
" [ 0 , 0 , 0 , 1 ],\n",
|
|
" [-k1-k3-3*a1*x1**2-3*a3*(x2-x1)**2, k3+3*a3*(x2-x1)**2 , -c1-c3 , c3 ],\n",
|
|
" [ k3-3*a3*(x2-x1)**2 , -k2-k3-3*a2*x2**2+3*a3*(x2-x1)**2 , c3 , -c2-c3]\n",
|
|
" ])\n",
|
|
"\n",
|
|
"def odeint_integrate(model, jac, dt, T, X0, rtol, atol):\n",
|
|
" t = np.linspace(0, T, int(T/dt))\n",
|
|
" X = odeint(model, X0, t, Dfun=jac, tfirst=True, rtol=rtol, atol=atol)\n",
|
|
" return X.T\n",
|
|
"\n",
|
|
"def solve_ivp_integrate(model, jac, dt, T, X0, rtol, atol):\n",
|
|
" t = np.linspace(0, T, int(T/dt))\n",
|
|
" sol = solve_ivp(model, [0, T], X0, t_eval=t, jac=jac, method='Radau', first_step=dt, rtol=rtol, atol=atol)\n",
|
|
" return sol.y\n",
|
|
"\n",
|
|
"# Rely on the same functional signatures by mimicing the data structure of lab measurement.\n",
|
|
"def simulate_xy_data(integrator, rows, xy_data, T, t_trans, t_scale, steps, x0, v0, p, progress=True):\n",
|
|
" sim_xy_data = {\n",
|
|
" 'x': np.zeros((101, 100)),\n",
|
|
" 'y': np.zeros((101, 100)),\n",
|
|
" 'f': np.zeros((101, 100)),\n",
|
|
" 'XResfFreq': xy_data['XResfFreq'],\n",
|
|
" 'YResfFreq': xy_data['YResfFreq']\n",
|
|
" }\n",
|
|
" _rows = tqdm(rows) if progress else rows\n",
|
|
" for i in _rows:\n",
|
|
" f = xy_data['f'][i,0]\n",
|
|
" omega = 2*np.pi*f/t_scale\n",
|
|
" X = integrator(\n",
|
|
" model2(omega, p),\n",
|
|
" jacobian2(omega, p),\n",
|
|
" (T-t_trans)/steps,\n",
|
|
" T,\n",
|
|
" x0 + v0,\n",
|
|
" 1e-3,\n",
|
|
" [1e-4, 1e-4, 1e-2, 1e-2]\n",
|
|
" )\n",
|
|
" x1, x2, xd1, xd2 = X\n",
|
|
" sim_xy_data['x'][i,:] = x1[-steps:]\n",
|
|
" sim_xy_data['y'][i,:] = x2[-steps:]\n",
|
|
" sim_xy_data['f'][i,:] = f\n",
|
|
" return sim_xy_data\n",
|
|
"\n",
|
|
"def simulate_experiment(xy_data, rows, zeta1, zeta2, gc, gk, ga, f1, f2, verbose=True):\n",
|
|
" # Amplitude at resonnance should be 1\n",
|
|
" # Aim for better numerical stability by setting C and m to approx. the same numeric precision\n",
|
|
" t_scale = 1\n",
|
|
" C1 = 1e7/t_scale\n",
|
|
" C2 = 1e7/t_scale\n",
|
|
" m1 = 1\n",
|
|
" m2 = 1\n",
|
|
"\n",
|
|
" # Fetch resonnance frequencies from data\n",
|
|
" f_r1 = xy_data['XResfFreq']/t_scale\n",
|
|
" f_r2 = xy_data['YResfFreq']/t_scale\n",
|
|
" omega_r1 = 2*np.pi*f_r1\n",
|
|
" omega_r2 = 2*np.pi*f_r2\n",
|
|
" #omega_01 = omega_r1/(np.sqrt(1-2*zeta1**2))\n",
|
|
" #omega_02 = omega_r2/(np.sqrt(1-2*zeta2**2))\n",
|
|
"\n",
|
|
" # Compute parameters from identities\n",
|
|
" #c1 = 2*zeta1*omega_01\n",
|
|
" #c2 = 2*zeta2*omega_02\n",
|
|
" c1 = 200\n",
|
|
" c2 = 200\n",
|
|
" c3 = gc(c1, c2)\n",
|
|
" k1 = omega_r1**2\n",
|
|
" k2 = omega_r2**2\n",
|
|
" k3 = gk(k1, k2)\n",
|
|
" #a1 = f1(k1, k2)\n",
|
|
" #a2 = f2(k1, k2)\n",
|
|
" #a3 = ga(k1, k2)\n",
|
|
" a1 = 1e8\n",
|
|
" a2 = 1e8\n",
|
|
" a3 = 0\n",
|
|
"\n",
|
|
" p = (\n",
|
|
" C1, C2,\n",
|
|
" m1, m2,\n",
|
|
" c1, c2, c3,\n",
|
|
" k1, k2, k3,\n",
|
|
" a1, a2, a3\n",
|
|
" )\n",
|
|
"\n",
|
|
" if verbose:\n",
|
|
" print(\"Parameters:\")\n",
|
|
" print(\"Omega_r 1 = %.3f\" % omega_r1)\n",
|
|
" print(\"Omega_r 2 = %.3f\" % omega_r2)\n",
|
|
" #print(\"Omega0 1 = %.3f\" % omega_01)\n",
|
|
" #print(\"Omega0 2 = %.3f\" % omega_02)\n",
|
|
" print(\"c1 = %.3f\" % c1)\n",
|
|
" print(\"c2 = %.3f\" % c2)\n",
|
|
" print(\"c3 = %.3f\" % c3)\n",
|
|
" print(\"k1 = %.3f\" % k1)\n",
|
|
" print(\"k2 = %.3f\" % k2)\n",
|
|
" print(\"k3 = %.3f\" % k3)\n",
|
|
" print(\"a1 = %.3f\" % a1)\n",
|
|
" print(\"a2 = %.3f\" % a2)\n",
|
|
" print(\"a3 = %.3f\" % a3)\n",
|
|
"\n",
|
|
" # Start from any state, the system stabilize quickly\n",
|
|
" x0, v0 = (-0.002, 0.01), (-0.004, 0.03)\n",
|
|
" #x0, v0 = (0.0, 0.0), (0.0, 0.0)\n",
|
|
" \n",
|
|
" # Set transient period to 0.1 seconds and simulate 100 steps over 0.5 seconds\n",
|
|
" t_trans = 0.1*t_scale\n",
|
|
" T = t_trans + 0.5*t_scale\n",
|
|
" steps = 100\n",
|
|
"\n",
|
|
" # Simulate mostly around resonnance\n",
|
|
" return simulate_xy_data(solve_ivp_integrate, rows, xy_data, T, t_trans, t_scale, steps, x0, v0, p, progress=verbose)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Harmonic oscillator\n",
|
|
"\n",
|
|
"Set $c_3 = k_3 = \\alpha_1 = \\alpha_2 = \\alpha_3 = 0$ for simulating a standard driven harmonic oscillator with no coupling between x- and y-components. Assume damping $\\zeta_1 = \\zeta_2 = 0.1$ and use resonnance frequencies from lab data to estimate parameters."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"exp_no = 0\n",
|
|
"print(\"Read data, experiment %d\" % exp_no)\n",
|
|
"xy_data = read_xy('data/XYPost.mat', exp_no)\n",
|
|
"\n",
|
|
"def gc(c1, c2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def gk(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def f1(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def f2(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def ga(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"rows = [50, 65, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 90, 100]\n",
|
|
"zeta1 = 0.1\n",
|
|
"zeta2 = 0.1\n",
|
|
"xyhat_data = simulate_experiment(xy_data, rows, zeta1, zeta2, gc, gk, ga, f1, f2, verbose=True)\n",
|
|
"\n",
|
|
"plot_std_freqscan(xyhat_data)\n",
|
|
"plot_xy(rows, xyhat_data)\n",
|
|
"plot_xyt(rows, xy_data, sim_xy_data=xyhat_data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### With duffing term\n",
|
|
"\n",
|
|
"The duffing term has to be pretty large to see any stiffening effect. Set $\\alpha_1 = 1500k_1$ and $\\alpha_2 = 1500k_2$ (still without coupling)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"exp_no = 0\n",
|
|
"print(\"Read data, experiment %d\" % exp_no)\n",
|
|
"xy_data = read_xy('data/XYPost.mat', exp_no)\n",
|
|
"\n",
|
|
"def gc(c1, c2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def gk(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"def f1(k1, k2):\n",
|
|
" return 1.5e3*k1\n",
|
|
"\n",
|
|
"def f2(k1, k2):\n",
|
|
" return 1.5e3*k2\n",
|
|
"\n",
|
|
"def ga(k1, k2):\n",
|
|
" return 0.0\n",
|
|
"\n",
|
|
"rows = [50, 65, 70, 75, 80, 85, 90, 100]\n",
|
|
"zeta1 = 0.1\n",
|
|
"zeta2 = 0.1\n",
|
|
"xyhat_data = simulate_experiment(xy_data, rows, zeta1, zeta2, gc, gk, ga, f1, f2, verbose=True)\n",
|
|
"\n",
|
|
"plot_std_freqscan(xyhat_data)\n",
|
|
"plot_xy(rows, xyhat_data)\n",
|
|
"plot_xyt(rows, xy_data, sim_xy_data=xyhat_data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### With coupling"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"exp_no = 0\n",
|
|
"print(\"Read data, experiment %d\" % exp_no)\n",
|
|
"xy_data = read_xy('data/XYPost.mat', exp_no)\n",
|
|
"\n",
|
|
"def gc(c1, c2):\n",
|
|
" return 0.05*(c1 + c2)\n",
|
|
"\n",
|
|
"def gk(k1, k2):\n",
|
|
" return 0.05*(k1 + k2)\n",
|
|
"\n",
|
|
"def f1(k1, k2):\n",
|
|
" return 1.5e3*k1\n",
|
|
"\n",
|
|
"def f2(k1, k2):\n",
|
|
" return 1.5e3*k2\n",
|
|
"\n",
|
|
"def ga(k1, k2):\n",
|
|
" return 0.05*(a1 + a2)\n",
|
|
"\n",
|
|
"rows = [50, 65, 70, 75, 80, 85, 90, 100]\n",
|
|
"zeta1 = 0.1\n",
|
|
"zeta2 = 0.1\n",
|
|
"xyhat_data = simulate_experiment(xy_data, rows, zeta1, zeta2, gc, gk, ga, f1, f2, verbose=True)\n",
|
|
"\n",
|
|
"plot_std_freqscan(xyhat_data)\n",
|
|
"plot_xy(rows, xyhat_data)\n",
|
|
"plot_xyt(rows, xy_data, sim_xy_data=xyhat_data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"<a name=\"loss-function\"></a>\n",
|
|
"## Loss function\n",
|
|
"\n",
|
|
"Given the two multivariate signals, one empirical and one simulated, we need a distance metric $d(\\mathbf{S}(\\omega), \\hat{\\mathbf{S}}(\\omega))$ that quantifies the error of our simulation.\n",
|
|
"\n",
|
|
"Consider first a single frequency $\\mathbf{S}(\\omega=x) \\in \\mathbb{R}^2$. Treat each component individually, perform autocorrelation do find the shift, then simply use mean squared error as the distance metric between the two common periods of $\\mathbf{S}$ and $\\hat{\\mathbf{S}}$. We extend this to the multivariate case by simply averaging the loss for each frequency.\n",
|
|
"\n",
|
|
"TODO: Assert that both components of $\\mathbf{S}(\\omega=x)$ have the same shift."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def normalize_signal(s):\n",
|
|
" return (s - np.mean(s)) / np.std(s)\n",
|
|
"\n",
|
|
"def autocorrelate_1d(s1, s2):\n",
|
|
" corr = np.correlate(s1, s2, mode='same') / (np.linalg.norm(s1)*np.linalg.norm(s2))\n",
|
|
" corr_half = corr[int(len(s1)/2):]\n",
|
|
" idx = np.argmax(corr_half)\n",
|
|
" return idx, corr_half[idx]\n",
|
|
"\n",
|
|
"def loss_1d(s1, s2, normalize=True):\n",
|
|
" assert len(s1) == len(s2)\n",
|
|
" N = len(s1)\n",
|
|
" if normalize:\n",
|
|
" _s1 = normalize_signal(s1)\n",
|
|
" _s2 = normalize_signal(s2)\n",
|
|
" else:\n",
|
|
" _s1 = s1\n",
|
|
" _s2 = s2\n",
|
|
" idx, coeff = autocorrelate_1d(_s1, _s2)\n",
|
|
" return idx, coeff, np.mean((_s1[idx:]-_s2[:N-idx])**2)\n",
|
|
"\n",
|
|
"def xy_loss(rows, xy_data, xyhat_data, normalize=True, verbose=False):\n",
|
|
" # Calculate correlation coefficients and MSE for both x and y for the specified set of rows\n",
|
|
" x_idxs, x_coeffs, x_mses = zip(*[loss_1d(xy_data['x'][i,:], xyhat_data['x'][i,:], normalize=normalize) for i in rows])\n",
|
|
" y_idxs, y_coeffs, y_mses = zip(*[loss_1d(xy_data['y'][i,:], xyhat_data['y'][i,:], normalize=normalize) for i in rows])\n",
|
|
" # Print some statistics\n",
|
|
" if verbose:\n",
|
|
" print('\\n'.join(map(\n",
|
|
" lambda var: \"%s: %.4f mean, %.4f std\" % (var[0], np.mean(var[1]), np.std(var[1])),\n",
|
|
" [\n",
|
|
" ('X idx', x_idxs),\n",
|
|
" ('Y idx', y_idxs),\n",
|
|
" ('X coeffs', x_coeffs),\n",
|
|
" ('Y coeffs', y_coeffs),\n",
|
|
" ('X MSEs', x_mses),\n",
|
|
" ('Y MSEs', y_mses)\n",
|
|
" ]\n",
|
|
" )))\n",
|
|
" # Return the sum of means of both components\n",
|
|
" return np.mean(x_mses) + np.mean(y_mses)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Loss function test\n",
|
|
"\n",
|
|
"Random signals and sines."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Test loss function\n",
|
|
"t = np.linspace(0, 100, 100)\n",
|
|
"s1 = {\n",
|
|
" 'f': np.array([\n",
|
|
" np.ones((100,)),\n",
|
|
" 2*np.ones((100,))\n",
|
|
" ]),\n",
|
|
" 'x': np.array([\n",
|
|
" np.random.randn(100),\n",
|
|
" np.array([1*np.sin(i/np.pi) for i in t]),\n",
|
|
" ]),\n",
|
|
" 'y': np.array([\n",
|
|
" np.random.randn(100),\n",
|
|
" np.array([1*np.cos(i/np.pi) for i in t]),\n",
|
|
" ])\n",
|
|
"}\n",
|
|
"s2 = {\n",
|
|
" 'f': np.array([\n",
|
|
" np.ones((100,)),\n",
|
|
" 2*np.ones((100,))\n",
|
|
" ]),\n",
|
|
" 'x': np.array([\n",
|
|
" np.random.randn(100),\n",
|
|
" np.array([1*np.cos(i/np.pi) for i in t]),\n",
|
|
" ]),\n",
|
|
" 'y': np.array([\n",
|
|
" np.random.randn(100),\n",
|
|
" np.array([1*np.sin(i/np.pi) for i in t]),\n",
|
|
" ])\n",
|
|
"}\n",
|
|
"\n",
|
|
"plot_xyt([0,1], s1, sim_xy_data=s2)\n",
|
|
"\n",
|
|
"print(\"Loss: %.4f\\n\" % xy_loss([0], s1, s2, verbose=True))\n",
|
|
"print(\"Loss: %.4f\\n\" % xy_loss([1], s1, s2, verbose=True))\n",
|
|
"print(\"Loss: %.4f\" % xy_loss([0, 1], s1, s2, verbose=True))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Loss for model\n",
|
|
"\n",
|
|
"Plotting normalized signals."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(\"Loss: %.4f\\n\" % xy_loss(rows, xy_data, xyhat_data, verbose=True))\n",
|
|
"plot_xyt(rows, xy_data, normalizer=normalize_signal, sim_xy_data=xyhat_data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#C_grid = [1e1] # Amplitude of driving force (gamma)\n",
|
|
"#c_grid = [1e2] # Damping (delta)\n",
|
|
"#a_grid = [1e-1] # Non-linear restoring force (beta)\n",
|
|
"#k_grid = [1e6] # Linear stiffness (alpha)\n",
|
|
"\n",
|
|
"#xy_data = read_xy('data/XYPost.mat', 0)\n",
|
|
"#rows = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]\n",
|
|
"#rows = [10, 65, 70, 75, 80, 85, 90]\n",
|
|
"\n",
|
|
"#losses = []\n",
|
|
"#best_loss = 1e9\n",
|
|
"#best_p = None\n",
|
|
"#for c, a, k, C in tqdm.tqdm(itertools.product(*[c_grid, a_grid, k_grid, C_grid])):\n",
|
|
"# print(\"c1=c2=c3=%.4f, a1=a2=a3=%.4f, k1=k2=k3=%.4f, C1=C2=%.4f\" % (c, a, k, C))\n",
|
|
"# _damping = 0.001\n",
|
|
"# _omegar = 8e3\n",
|
|
"# _omega0 = _omegar/(np.sqrt(1-2*_damping**2))\n",
|
|
"# C = 1e5\n",
|
|
"# c2 = 2*_damping*_omega0\n",
|
|
"# k2 = _omega0**2\n",
|
|
"# a = 0.5\n",
|
|
"# p = (C, C, 0.03*c2, c2, 0.01*c2, 0.01*a, 0.9*a, 0.02*a, 0.5*k2, k2, 0.1*k2)\n",
|
|
"# #p = (C, C, c, c, c, a, a, a, k, k, k)\n",
|
|
"# xyhat_data = simulate_xy_data(rows, xy_data, p)\n",
|
|
"# loss = xy_loss(rows, xy_data, xyhat_data, verbose=True)\n",
|
|
"# losses.append(loss)\n",
|
|
"# if loss < best_loss:\n",
|
|
"# best_loss = loss\n",
|
|
"# best_p = p\n",
|
|
"# print(\"Loss: %.4f\\n\" % loss)\n",
|
|
"# plot_xyt(rows, xy_data, sim_xy_data=xyhat_data)\n",
|
|
"# break"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"@curry\n",
|
|
"def objective(omega, p):\n",
|
|
" obj = 0.0\n",
|
|
" # Simulate and return MSE(xy_data, sim_xy_data)\n",
|
|
" return obj\n",
|
|
"\n",
|
|
"p0 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)\n",
|
|
"bounds = [\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2),\n",
|
|
" (0.1, 0.2)\n",
|
|
"]\n",
|
|
"#omegas = xy_data['f'][:,0].tolist()\n",
|
|
"#solution = minimize(objective(omega), p0, method='SLSQP', bounds=bounds)\n",
|
|
"#p = solution.x\n",
|
|
"\n",
|
|
"# Simulate with updated values\n",
|
|
"#t, X, dt, pstep = model(T, t_trans, dt_per_period, x0, v0, omega, p)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"anaconda-cloud": {},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.2"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|