{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Automatic photo categorization\n",
"\n",
"\n",
"Goals:\n",
" - Categorize photos into semantically similar groups.\n",
" - Mark similar photos for removal.\n",
"\n",
"\n",
"## Table of contents\n",
" 1. [Features](#features)\n",
" 2. [Clustering](#clustering)\n",
" 3. [Deduplication](#deduplication)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"from tqdm import tqdm\n",
"#from tqdm.notebook import tqdm\n",
"\n",
"from toolz import compose\n",
"from toolz.curried import map, filter"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from photocat import fs, photo, group\n",
"\n",
"INPUT_DIR = 'data/photos'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Features\n",
"\n",
"Extract features from EXIF data and YOLOv3 output."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def show_photos(photos, n_row, n_col, size=4):\n",
" _, axs = plt.subplots(n_row, n_col, figsize=(n_col*size, n_row*size))\n",
" axs = axs.flatten()\n",
" for p, ax in zip(photos, axs):\n",
" ax.imshow(p.thumbnail)\n",
" plt.show()\n",
"\n",
"photos = compose(\n",
" list,\n",
" tqdm,\n",
" map(lambda f: photo.Photo(f)),\n",
" fs.list_images\n",
")(INPUT_DIR)\n",
"\n",
"show_photos(photos[0:24], 6, 4)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Clustering\n",
"\n",
"Normalize features and cluster with DBSCAN."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Deduplication\n",
"\n",
"Use eucledian distance between outputs of topmost YOLOv3 layers as a metric for photo similarity."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}