"""Residual blocks: Conv and identity""" from keras.initializers import glorot_uniform from keras.layers import Add, Activation, Conv2D, BatchNormalization def basic_block(X, f, filters, s, label): """ Residual net identity block. Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path label -- label to use for naming s -- strides Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) """ F1, F2 = filters X_shortcut = X # First component of main path X = Conv2D( F1, kernel_size=(f, f), strides=(s, s), padding='same', name='conv_%s_2a' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2a' % label)(X) X = Activation('relu')(X) # Second component of main path X = Conv2D( F2, kernel_size=(f, f), strides=(1, 1), padding='same', name='conv_%s_2b' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2b' % label)(X) # Shortcut path X_shortcut = Conv2D( F2, kernel_size=(1, 1), strides=(s, s), padding='valid', name='conv_%s_1' % label, kernel_initializer=glorot_uniform(seed=0) )(X_shortcut) X_shortcut = BatchNormalization(axis=3, name='bn_%s_1' % label)(X_shortcut) # Add shortcut value to main path, and pass it through a RELU activation X = Add()([X_shortcut, X]) X = Activation('relu')(X) return X def identity_block(X, f, filters, label): """ Residual net identity block. Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path label -- label to use for naming Returns: X -- output of the identity block, tensor of shape (n_H, n_W, n_C) """ F1, F2, F3 = filters X_shortcut = X # First component of main path X = Conv2D( F1, kernel_size=(1, 1), strides=(1,1), padding='valid', name='conv_%s_2a' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2a' % label)(X) X = Activation('relu')(X) # Second component of main path X = Conv2D( F2, kernel_size=(f, f), strides=(1, 1), padding='same', name='conv_%s_2b' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2b' % label)(X) X = Activation('relu')(X) # Third component of main path X = Conv2D( F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name='conv_%s_2c' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2c' % label)(X) # Add shortcut value to main path, and pass it through a RELU activation X = Add()([X_shortcut, X]) X = Activation('relu')(X) return X def convolutional_block(X, f, filters, label, s=2): """ Residual net convolutional block. Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path label -- label to use for naming s -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) """ F1, F2, F3 = filters X_shortcut = X # First component of main path X = Conv2D( F1, kernel_size=(1, 1), strides=(s,s), padding='valid', name='conv_%s_2a' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2a' % label)(X) X = Activation('relu')(X) # Second component of main path X = Conv2D( F2, kernel_size=(f, f), strides=(1, 1), padding='same', name='conv_%s_2b' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2b' % label)(X) X = Activation('relu')(X) # Third component of main path X = Conv2D( F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name='conv_%s_2c' % label, kernel_initializer=glorot_uniform(seed=0) )(X) X = BatchNormalization(axis=3, name='bn_%s_2c' % label)(X) # Shortcut path X_shortcut = Conv2D( F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name='conv_%s_1' % label, kernel_initializer=glorot_uniform(seed=0) )(X_shortcut) X_shortcut = BatchNormalization(axis=3, name='bn_%s_1' % label)(X_shortcut) # Add shortcut value to main path, and pass it through a RELU activation X = Add()([X_shortcut, X]) X = Activation('relu')(X) return X